metadata
library_name: transformers
license: apache-2.0
base_model: sugarblock/music_genres_classification-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ' music_genres_classification-finetuned-gtzan -finetuned-gtzan'
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.94
music_genres_classification-finetuned-gtzan -finetuned-gtzan
This model is a fine-tuned version of sugarblock/music_genres_classification-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4356
- Accuracy: 0.94
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9845 | 1.0 | 75 | 0.3721 | 0.91 |
0.457 | 2.0 | 150 | 0.8952 | 0.82 |
0.5794 | 3.0 | 225 | 0.6648 | 0.87 |
0.5021 | 4.0 | 300 | 0.9442 | 0.81 |
0.1773 | 5.0 | 375 | 0.5641 | 0.89 |
0.4351 | 6.0 | 450 | 0.5452 | 0.91 |
0.2511 | 7.0 | 525 | 0.4356 | 0.94 |
0.4016 | 8.0 | 600 | 0.4058 | 0.94 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0