SentenceTransformer based on cross-encoder/ms-marco-MiniLM-L-6-v2
This is a sentence-transformers model finetuned from cross-encoder/ms-marco-MiniLM-L-6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cross-encoder/ms-marco-MiniLM-L-6-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Trelis/ms-marco-MiniLM-L-6-v2-2-cst-ep-MNRLtriplets-2e-5-batch32-gpu-overlap")
# Run inference
sentences = [
'What is the minimum number of digits allowed for identifying numbers according to clause 4.3.1?',
'2. 2 teams playing unregistered players are liable to forfeit any match in which unregistered players have competed. fit playing rules - 5th edition copyright © touch football australia 2020 5 3 the ball 3. 1 the game is played with an oval, inflated ball of a shape, colour and size approved by fit or the nta. 3. 2 the ball shall be inflated to the manufacturers ’ recommended air pressure. 3. 3 the referee shall immediately pause the match if the size and shape of the ball no longer complies with clauses 3. 1 or 3. 2 to allow for the ball to replaced or the issue rectified. 3. 4 the ball must not be hidden under player attire. 4 playing uniform 4. 1 participating players are to be correctly attired in matching team uniforms 4. 2 playing uniforms consist of shirt, singlet or other item as approved by the nta or nta competition provider, shorts and / or tights and socks. 4. 3 all players are to wear a unique identifying number not less than 16cm in height, clearly displayed on the rear of the playing top. 4. 3. 1 identifying numbers must feature no more than two ( 2 ) digits.',
'24. 5 for the avoidance of doubt for clauses 24. 3 and 24. 4 the non - offending team will retain a numerical advantage on the field of play during the drop - off. 25 match officials 25. 1 the referee is the sole judge on all match related matters inside the perimeter for the duration of a match, has jurisdiction over all players, coaches and officials and is required to : 25. 1. 1 inspect the field of play, line markings and markers prior to the commencement of the match to ensure the safety of all participants. 25. 1. 2 adjudicate on the rules of the game ; 25. 1. 3 impose any sanction necessary to control the match ; 25. 1. 4 award tries and record the progressive score ; 25. 1. 5 maintain a count of touches during each possession ; 25. 1. 6 award penalties for infringements against the rules ; and 25. 1. 7 report to the relevant competition administration any sin bins, dismissals or injuries to any participant sustained during a match. 25. 2 only team captains are permitted to seek clarification of a decision directly from the referee. an approach may only be made during a break in play or at the discretion of the referee.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: constantwarmup_ratio
: 0.3bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.3warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0066 | 2 | 4.4256 | - |
0.0131 | 4 | 4.1504 | - |
0.0197 | 6 | 4.0494 | - |
0.0262 | 8 | 4.0447 | - |
0.0328 | 10 | 3.9851 | - |
0.0393 | 12 | 3.9284 | - |
0.0459 | 14 | 3.9155 | - |
0.0525 | 16 | 3.8791 | - |
0.0590 | 18 | 3.8663 | - |
0.0656 | 20 | 3.9012 | - |
0.0721 | 22 | 3.8999 | - |
0.0787 | 24 | 3.7895 | - |
0.0852 | 26 | 3.7235 | - |
0.0918 | 28 | 3.7938 | - |
0.0984 | 30 | 3.5057 | - |
0.1049 | 32 | 3.5776 | - |
0.1115 | 34 | 3.5092 | - |
0.1180 | 36 | 3.7226 | - |
0.1246 | 38 | 3.5426 | - |
0.1311 | 40 | 3.7318 | - |
0.1377 | 42 | 3.529 | - |
0.1443 | 44 | 3.5977 | - |
0.1508 | 46 | 3.6484 | - |
0.1574 | 48 | 3.5026 | - |
0.1639 | 50 | 3.4568 | - |
0.1705 | 52 | 3.6119 | - |
0.1770 | 54 | 3.4206 | - |
0.1836 | 56 | 3.3701 | - |
0.1902 | 58 | 3.3232 | - |
0.1967 | 60 | 3.3398 | - |
0.2033 | 62 | 3.333 | - |
0.2098 | 64 | 3.3587 | - |
0.2164 | 66 | 3.1304 | - |
0.2230 | 68 | 3.0618 | - |
0.2295 | 70 | 3.145 | - |
0.2361 | 72 | 3.2074 | - |
0.2426 | 74 | 3.0436 | - |
0.2492 | 76 | 3.0572 | - |
0.2525 | 77 | - | 3.0810 |
0.2557 | 78 | 3.1225 | - |
0.2623 | 80 | 2.8197 | - |
0.2689 | 82 | 2.8979 | - |
0.2754 | 84 | 2.7827 | - |
0.2820 | 86 | 2.9472 | - |
0.2885 | 88 | 2.918 | - |
0.2951 | 90 | 2.7035 | - |
0.3016 | 92 | 2.6876 | - |
0.3082 | 94 | 2.8322 | - |
0.3148 | 96 | 2.6335 | - |
0.3213 | 98 | 2.3754 | - |
0.3279 | 100 | 3.0978 | - |
0.3344 | 102 | 2.4946 | - |
0.3410 | 104 | 2.5085 | - |
0.3475 | 106 | 2.7456 | - |
0.3541 | 108 | 2.3934 | - |
0.3607 | 110 | 2.3222 | - |
0.3672 | 112 | 2.4773 | - |
0.3738 | 114 | 2.6684 | - |
0.3803 | 116 | 2.2435 | - |
0.3869 | 118 | 2.243 | - |
0.3934 | 120 | 2.228 | - |
0.4 | 122 | 2.4652 | - |
0.4066 | 124 | 2.2113 | - |
0.4131 | 126 | 2.0805 | - |
0.4197 | 128 | 2.5041 | - |
0.4262 | 130 | 2.4489 | - |
0.4328 | 132 | 2.2474 | - |
0.4393 | 134 | 2.0252 | - |
0.4459 | 136 | 2.257 | - |
0.4525 | 138 | 1.9381 | - |
0.4590 | 140 | 2.0183 | - |
0.4656 | 142 | 2.1021 | - |
0.4721 | 144 | 2.1508 | - |
0.4787 | 146 | 1.9669 | - |
0.4852 | 148 | 1.7468 | - |
0.4918 | 150 | 1.8776 | - |
0.4984 | 152 | 1.8081 | - |
0.5049 | 154 | 1.6799 | 1.6088 |
0.5115 | 156 | 1.9628 | - |
0.5180 | 158 | 1.8253 | - |
0.5246 | 160 | 1.7791 | - |
0.5311 | 162 | 1.8463 | - |
0.5377 | 164 | 1.6357 | - |
0.5443 | 166 | 1.6531 | - |
0.5508 | 168 | 1.6747 | - |
0.5574 | 170 | 1.5666 | - |
0.5639 | 172 | 1.7272 | - |
0.5705 | 174 | 1.6045 | - |
0.5770 | 176 | 1.3786 | - |
0.5836 | 178 | 1.6547 | - |
0.5902 | 180 | 1.6416 | - |
0.5967 | 182 | 1.4796 | - |
0.6033 | 184 | 1.4595 | - |
0.6098 | 186 | 1.4106 | - |
0.6164 | 188 | 1.4844 | - |
0.6230 | 190 | 1.4581 | - |
0.6295 | 192 | 1.4922 | - |
0.6361 | 194 | 1.2978 | - |
0.6426 | 196 | 1.2612 | - |
0.6492 | 198 | 1.4725 | - |
0.6557 | 200 | 1.3162 | - |
0.6623 | 202 | 1.3736 | - |
0.6689 | 204 | 1.4553 | - |
0.6754 | 206 | 1.4011 | - |
0.6820 | 208 | 1.2523 | - |
0.6885 | 210 | 1.3732 | - |
0.6951 | 212 | 1.3721 | - |
0.7016 | 214 | 1.5262 | - |
0.7082 | 216 | 1.2631 | - |
0.7148 | 218 | 1.6174 | - |
0.7213 | 220 | 1.4252 | - |
0.7279 | 222 | 1.3527 | - |
0.7344 | 224 | 1.1969 | - |
0.7410 | 226 | 1.2901 | - |
0.7475 | 228 | 1.4379 | - |
0.7541 | 230 | 1.1332 | - |
0.7574 | 231 | - | 1.0046 |
0.7607 | 232 | 1.3693 | - |
0.7672 | 234 | 1.3097 | - |
0.7738 | 236 | 1.2314 | - |
0.7803 | 238 | 1.0873 | - |
0.7869 | 240 | 1.2882 | - |
0.7934 | 242 | 1.1723 | - |
0.8 | 244 | 1.1748 | - |
0.8066 | 246 | 1.2916 | - |
0.8131 | 248 | 1.0894 | - |
0.8197 | 250 | 1.2299 | - |
0.8262 | 252 | 1.207 | - |
0.8328 | 254 | 1.1361 | - |
0.8393 | 256 | 1.1323 | - |
0.8459 | 258 | 1.0927 | - |
0.8525 | 260 | 1.1433 | - |
0.8590 | 262 | 1.1088 | - |
0.8656 | 264 | 1.1384 | - |
0.8721 | 266 | 1.0962 | - |
0.8787 | 268 | 1.1878 | - |
0.8852 | 270 | 1.0113 | - |
0.8918 | 272 | 1.1411 | - |
0.8984 | 274 | 1.0289 | - |
0.9049 | 276 | 1.0163 | - |
0.9115 | 278 | 1.2859 | - |
0.9180 | 280 | 0.9449 | - |
0.9246 | 282 | 1.0941 | - |
0.9311 | 284 | 1.0908 | - |
0.9377 | 286 | 1.1028 | - |
0.9443 | 288 | 1.0633 | - |
0.9508 | 290 | 1.1004 | - |
0.9574 | 292 | 1.0483 | - |
0.9639 | 294 | 1.0064 | - |
0.9705 | 296 | 1.0088 | - |
0.9770 | 298 | 1.0068 | - |
0.9836 | 300 | 1.1903 | - |
0.9902 | 302 | 0.9401 | - |
0.9967 | 304 | 0.8369 | - |
1.0033 | 306 | 0.5046 | - |
1.0098 | 308 | 1.0626 | 0.8660 |
1.0164 | 310 | 0.9587 | - |
1.0230 | 312 | 1.0565 | - |
1.0295 | 314 | 1.1329 | - |
1.0361 | 316 | 1.1857 | - |
1.0426 | 318 | 0.9777 | - |
1.0492 | 320 | 0.9883 | - |
1.0557 | 322 | 0.9076 | - |
1.0623 | 324 | 0.7942 | - |
1.0689 | 326 | 1.1952 | - |
1.0754 | 328 | 0.9726 | - |
1.0820 | 330 | 1.0663 | - |
1.0885 | 332 | 1.0337 | - |
1.0951 | 334 | 0.9522 | - |
1.1016 | 336 | 0.9813 | - |
1.1082 | 338 | 0.9057 | - |
1.1148 | 340 | 1.0076 | - |
1.1213 | 342 | 0.8557 | - |
1.1279 | 344 | 0.9341 | - |
1.1344 | 346 | 0.9188 | - |
1.1410 | 348 | 1.091 | - |
1.1475 | 350 | 0.8205 | - |
1.1541 | 352 | 1.0509 | - |
1.1607 | 354 | 0.9201 | - |
1.1672 | 356 | 1.0741 | - |
1.1738 | 358 | 0.8662 | - |
1.1803 | 360 | 0.9468 | - |
1.1869 | 362 | 0.8604 | - |
1.1934 | 364 | 0.8141 | - |
1.2 | 366 | 0.9475 | - |
1.2066 | 368 | 0.8407 | - |
1.2131 | 370 | 0.764 | - |
1.2197 | 372 | 0.798 | - |
1.2262 | 374 | 0.8205 | - |
1.2328 | 376 | 0.7995 | - |
1.2393 | 378 | 0.9305 | - |
1.2459 | 380 | 0.858 | - |
1.2525 | 382 | 0.8465 | - |
1.2590 | 384 | 0.7691 | - |
1.2623 | 385 | - | 0.7879 |
1.2656 | 386 | 1.0073 | - |
1.2721 | 388 | 0.8026 | - |
1.2787 | 390 | 0.8108 | - |
1.2852 | 392 | 0.7783 | - |
1.2918 | 394 | 0.8766 | - |
1.2984 | 396 | 0.8576 | - |
1.3049 | 398 | 0.884 | - |
1.3115 | 400 | 0.9547 | - |
1.3180 | 402 | 0.9231 | - |
1.3246 | 404 | 0.8027 | - |
1.3311 | 406 | 0.9117 | - |
1.3377 | 408 | 0.7743 | - |
1.3443 | 410 | 0.8257 | - |
1.3508 | 412 | 0.8738 | - |
1.3574 | 414 | 0.972 | - |
1.3639 | 416 | 0.8297 | - |
1.3705 | 418 | 0.8941 | - |
1.3770 | 420 | 0.8513 | - |
1.3836 | 422 | 0.7588 | - |
1.3902 | 424 | 0.8332 | - |
1.3967 | 426 | 0.7682 | - |
1.4033 | 428 | 0.7916 | - |
1.4098 | 430 | 0.9519 | - |
1.4164 | 432 | 1.0526 | - |
1.4230 | 434 | 0.8724 | - |
1.4295 | 436 | 0.8267 | - |
1.4361 | 438 | 0.7672 | - |
1.4426 | 440 | 0.7977 | - |
1.4492 | 442 | 0.6947 | - |
1.4557 | 444 | 0.9042 | - |
1.4623 | 446 | 0.8971 | - |
1.4689 | 448 | 0.9655 | - |
1.4754 | 450 | 0.8512 | - |
1.4820 | 452 | 0.9421 | - |
1.4885 | 454 | 0.9501 | - |
1.4951 | 456 | 0.8214 | - |
1.5016 | 458 | 0.9335 | - |
1.5082 | 460 | 0.7617 | - |
1.5148 | 462 | 0.8601 | 0.7855 |
1.5213 | 464 | 0.757 | - |
1.5279 | 466 | 0.7389 | - |
1.5344 | 468 | 0.8146 | - |
1.5410 | 470 | 0.9235 | - |
1.5475 | 472 | 0.9901 | - |
1.5541 | 474 | 0.9624 | - |
1.5607 | 476 | 0.8909 | - |
1.5672 | 478 | 0.7276 | - |
1.5738 | 480 | 0.9444 | - |
1.5803 | 482 | 0.874 | - |
1.5869 | 484 | 0.7985 | - |
1.5934 | 486 | 0.9335 | - |
1.6 | 488 | 0.8108 | - |
1.6066 | 490 | 0.7779 | - |
1.6131 | 492 | 0.8807 | - |
1.6197 | 494 | 0.8146 | - |
1.6262 | 496 | 0.9218 | - |
1.6328 | 498 | 0.8439 | - |
1.6393 | 500 | 0.7348 | - |
1.6459 | 502 | 0.8533 | - |
1.6525 | 504 | 0.7695 | - |
1.6590 | 506 | 0.7911 | - |
1.6656 | 508 | 0.837 | - |
1.6721 | 510 | 0.731 | - |
1.6787 | 512 | 0.911 | - |
1.6852 | 514 | 0.7963 | - |
1.6918 | 516 | 0.7719 | - |
1.6984 | 518 | 0.8011 | - |
1.7049 | 520 | 0.7428 | - |
1.7115 | 522 | 0.8159 | - |
1.7180 | 524 | 0.7833 | - |
1.7246 | 526 | 0.7934 | - |
1.7311 | 528 | 0.7854 | - |
1.7377 | 530 | 0.8398 | - |
1.7443 | 532 | 0.7875 | - |
1.7508 | 534 | 0.7282 | - |
1.7574 | 536 | 0.8269 | - |
1.7639 | 538 | 0.8033 | - |
1.7672 | 539 | - | 0.7595 |
1.7705 | 540 | 0.9471 | - |
1.7770 | 542 | 0.941 | - |
1.7836 | 544 | 0.725 | - |
1.7902 | 546 | 0.8978 | - |
1.7967 | 548 | 0.8361 | - |
1.8033 | 550 | 0.7092 | - |
1.8098 | 552 | 0.809 | - |
1.8164 | 554 | 0.9399 | - |
1.8230 | 556 | 0.769 | - |
1.8295 | 558 | 0.7381 | - |
1.8361 | 560 | 0.7554 | - |
1.8426 | 562 | 0.8553 | - |
1.8492 | 564 | 0.919 | - |
1.8557 | 566 | 0.7479 | - |
1.8623 | 568 | 0.8381 | - |
1.8689 | 570 | 0.7911 | - |
1.8754 | 572 | 0.8076 | - |
1.8820 | 574 | 0.7868 | - |
1.8885 | 576 | 0.9147 | - |
1.8951 | 578 | 0.7271 | - |
1.9016 | 580 | 0.7201 | - |
1.9082 | 582 | 0.7538 | - |
1.9148 | 584 | 0.7522 | - |
1.9213 | 586 | 0.7737 | - |
1.9279 | 588 | 0.7187 | - |
1.9344 | 590 | 0.8713 | - |
1.9410 | 592 | 0.7971 | - |
1.9475 | 594 | 0.8226 | - |
1.9541 | 596 | 0.7074 | - |
1.9607 | 598 | 0.804 | - |
1.9672 | 600 | 0.7259 | - |
1.9738 | 602 | 0.7758 | - |
1.9803 | 604 | 0.8209 | - |
1.9869 | 606 | 0.7918 | - |
1.9934 | 608 | 0.7467 | - |
2.0 | 610 | 0.4324 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.17.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Trelis/ms-marco-MiniLM-L-6-v2-2-cst-ep-MNRLtriplets-2e-5-batch32-gpu-overlap
Base model
cross-encoder/ms-marco-MiniLM-L-6-v2