Triangle104/Omega-Qwen2.5-Coder-3B-Q4_K_M-GGUF
This model was converted to GGUF format from prithivMLmods/Omega-Qwen2.5-Coder-3B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Omega-Qwen2.5-Coder-3B is a compact and high-efficiency code-focused model fine-tuned on Qwen2.5-Coder-3B-Instruct, using the symbolic-rich Open-Omega-Forge-1M dataset. Designed specifically for hard-coded tasks and deterministic computation, this model runs in a "thinking-disabled" mode—delivering precise, structured outputs with minimal hallucination, making it ideal for rigorous coding workflows and embedded logic applications.
Thinking: Disabled
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q4_K_M-GGUF --hf-file omega-qwen2.5-coder-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q4_K_M-GGUF --hf-file omega-qwen2.5-coder-3b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q4_K_M-GGUF --hf-file omega-qwen2.5-coder-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q4_K_M-GGUF --hf-file omega-qwen2.5-coder-3b-q4_k_m.gguf -c 2048
- Downloads last month
- -
4-bit
Model tree for Triangle104/Omega-Qwen2.5-Coder-3B-Q4_K_M-GGUF
Base model
Qwen/Qwen2.5-3B