masked-lm-tpu / README.md
Trickshotblaster's picture
Training in progress epoch 29
3e15564
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Trickshotblaster/masked-lm-tpu
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Trickshotblaster/masked-lm-tpu
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.0588
- Train Accuracy: 0.0445
- Validation Loss: 5.0495
- Validation Accuracy: 0.0449
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 22325, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1175, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 5.1057 | 0.0447 | 5.1128 | 0.0445 | 0 |
| 5.1366 | 0.0445 | 5.1449 | 0.0446 | 1 |
| 5.1152 | 0.0445 | 5.1034 | 0.0441 | 2 |
| 5.1297 | 0.0442 | 5.0708 | 0.0449 | 3 |
| 5.1002 | 0.0448 | 5.0494 | 0.0449 | 4 |
| 5.1155 | 0.0443 | 5.1304 | 0.0440 | 5 |
| 5.0949 | 0.0445 | 5.1050 | 0.0441 | 6 |
| 5.0747 | 0.0451 | 5.0769 | 0.0446 | 7 |
| 5.0840 | 0.0447 | 5.0664 | 0.0442 | 8 |
| 5.0828 | 0.0446 | 5.1446 | 0.0438 | 9 |
| 5.0994 | 0.0444 | 5.0545 | 0.0454 | 10 |
| 5.1009 | 0.0448 | 5.0466 | 0.0452 | 11 |
| 5.1028 | 0.0442 | 5.0538 | 0.0458 | 12 |
| 5.0771 | 0.0447 | 5.0645 | 0.0445 | 13 |
| 5.0809 | 0.0443 | 5.0884 | 0.0438 | 14 |
| 5.0831 | 0.0445 | 5.0946 | 0.0450 | 15 |
| 5.0753 | 0.0444 | 5.1057 | 0.0441 | 16 |
| 5.0786 | 0.0447 | 5.1212 | 0.0439 | 17 |
| 5.0674 | 0.0446 | 5.0428 | 0.0453 | 18 |
| 5.0737 | 0.0447 | 5.0155 | 0.0458 | 19 |
| 5.0510 | 0.0448 | 5.1046 | 0.0443 | 20 |
| 5.0815 | 0.0446 | 5.0959 | 0.0441 | 21 |
| 5.0518 | 0.0450 | 5.0441 | 0.0453 | 22 |
| 5.0514 | 0.0449 | 5.0835 | 0.0442 | 23 |
| 5.0400 | 0.0449 | 5.0802 | 0.0444 | 24 |
| 5.0708 | 0.0446 | 5.0587 | 0.0440 | 25 |
| 5.0745 | 0.0441 | 5.0809 | 0.0440 | 26 |
| 5.0467 | 0.0446 | 5.0542 | 0.0444 | 27 |
| 5.0190 | 0.0449 | 5.0191 | 0.0453 | 28 |
| 5.0588 | 0.0445 | 5.0495 | 0.0449 | 29 |
### Framework versions
- Transformers 4.30.1
- TensorFlow 2.12.0
- Tokenizers 0.13.3