Tune-A-Video - Modern Disney
Model Description
This is a diffusers compatible checkpoint. When used with DiffusionPipeline, returns an instance of TuneAVideoPipeline
df-cpt is used to indicate that its a diffusers compatible equivalent of Tune-A-Video-library/mo-di-bear-guitar .
- Base model: nitrosocke/mo-di-diffusion
- Training prompt: a bear is playing guitar.
Samples
Test prompt: "A princess playing a guitar, modern disney style"
Usage
Loading with a pre-existing Text2Image checkpoint
import torch
from diffusers import TuneAVideoPipeline, DDIMScheduler, UNet3DConditionModel
from diffusers.utils import export_to_video
from PIL import Image
# Use any pretrained Text2Image checkpoint based on stable diffusion
pretrained_model_path = "nitrosocke/mo-di-diffusion"
unet = UNet3DConditionModel.from_pretrained(
"Tune-A-Video-library/df-cpt-mo-di-bear-guitar", subfolder="unet", torch_dtype=torch.float16
).to("cuda")
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
prompt = "A princess playing a guitar, modern disney style"
generator = torch.Generator(device="cuda").manual_seed(42)
video_frames = pipe(prompt, video_length=3, generator=generator, num_inference_steps=50, output_type="np").frames
# Saving to gif.
pil_frames = [Image.fromarray(frame) for frame in video_frames]
duration = len(pil_frames) / 8
pil_frames[0].save(
"animation.gif",
save_all=True,
append_images=pil_frames[1:], # append rest of the images
duration=duration * 1000, # in milliseconds
loop=0,
)
# Saving to video
video_path = export_to_video(video_frames)
Loading a saved Tune-A-Video checkpoint
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import export_to_video
from PIL import Image
pipe = DiffusionPipeline.from_pretrained(
"Tune-A-Video-library/df-cpt-mo-di-bear-guitar", torch_dtype=torch.float16
).to("cuda")
prompt = "A princess playing a guitar, modern disney style"
generator = torch.Generator(device="cuda").manual_seed(42)
video_frames = pipe(prompt, video_length=3, generator=generator, num_inference_steps=50, output_type="np").frames
# Saving to gif.
pil_frames = [Image.fromarray(frame) for frame in video_frames]
duration = len(pil_frames) / 8
pil_frames[0].save(
"animation.gif",
save_all=True,
append_images=pil_frames[1:], # append rest of the images
duration=duration * 1000, # in milliseconds
loop=0,
)
# Saving to video
video_path = export_to_video(video_frames)
Related Papers:
- Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
- Stable Diffusion: High-Resolution Image Synthesis with Latent Diffusion Models
- Downloads last month
- 7
Model tree for Tune-A-Video-library/df-cpt-mo-di-bear-guitar
Base model
nitrosocke/mo-di-diffusion