Model Card for RedWhale-tv-10.8B-v1.0
Model Description
RedWhale์ ์ ์ฒ๋ฆฌํ ํ๊ตญ์ด Corpus, ํนํ๋ ํ๊ตญ์ด Tokenizer, ํจ๊ณผ์ ์ธ Model initialization, Continuous Multi-Stage Pretraining strategy ๋ฑ์ ๊ฐ์ถ๊ณ ์์ต๋๋ค. ์ด๋ฌํ ์ ๊ทผ ๋ฐฉ์์ ๋์ ์ ํ๋์ ์ดํด๋๋ฅผ ์ ์งํ๋ฉด์ Computational costs๋ฅผ ์ค์ฌ ์ ํ๋ ๋ฆฌ์์ค์์ Pretraining์ ๊ฐ๋ฅํ๊ฒ ํด์ค๋๋ค. RedWhale ์ฌ์ฉ์ ์ํ์๋ฉด repo access ์์ฒญํด์ฃผ์ธ์.
About the Model
- Name: TwinDoc/RedWhale-tv-10.8B-v1.0
- Foundation Model: upstage/SOLAR-10.7B-v1.0
- Train Corpus: preprocessed AI-Hub datasets
- Developed by: ์ ์์ผ์๋ค (AGILESODA)
- Model type: llama
- Language(s) (NLP): ํ๊ตญ์ด, ์์ด
- License: cc-by-nc-sa-4.0
- Paper: RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining
Load the Model
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
YOUR_HF_TOKEN_READ = "hf_..."
model_name_or_path = "TwinDoc/RedWhale-tv-10.8B-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, token=YOUR_HF_TOKEN_READ)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, token=YOUR_HF_TOKEN_READ)
Generate Text
text = "๋ํ๋ฏผ๊ตญ์ ์๋๋"
encodings = tokenizer(text, return_tensors='pt')
terminators = [tokenizer.eos_token_id] + tokenizer("\n", add_special_tokens=False)["input_ids"]
outputs = model.generate(**encodings, eos_token_id=terminators)
generated_text = tokenizer.batch_decode(outputs)[0]
# '<s> ๋ํ๋ฏผ๊ตญ์ ์๋๋ ์์ธ์ด๋ค.\n'
License
The content of this project, created by AGILESODA, is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Citation
@misc{vo2024redwhaleadaptedkoreanllm,
title={RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining},
author={Anh-Dung Vo and Minseong Jung and Wonbeen Lee and Daewoo Choi},
year={2024},
eprint={2408.11294},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.11294},
}
Built with:
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for TwinDoc/RedWhale-tv-10.8B-v1.0
Collection including TwinDoc/RedWhale-tv-10.8B-v1.0
Collection
1 item
โข
Updated