Whisper openai-whisper-large

This model is a fine-tuned version of openai/whisper-large on the llamadas ecu911 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2752
  • Wer: 21.9973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5213 0.9980 379 0.3177 28.9193
0.1902 1.9987 759 0.2807 26.8399
0.1043 2.9993 1139 0.2605 20.3420
0.0604 4.0 1519 0.2653 17.9070
0.0424 4.9980 1898 0.2632 16.4979
0.2015 5.9987 2278 0.2869 18.2353
0.0257 6.9993 2658 0.2714 16.4979
0.0236 8.0 3038 0.2759 18.3584
0.0198 8.9980 3417 0.2700 15.5267
0.0156 9.9803 3790 0.2752 21.9973

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
36
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for UDA-LIDI/openai-whisper-large-fullFT-es_ecu911_V2martin_win30s

Finetuned
(74)
this model