Whisper openai-whisper-large-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the llamadas ecu911 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4269
  • Wer: 63.4503

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.027 0.9860 53 0.9172 56.4327
0.528 1.9907 107 0.9384 53.5088
0.2863 2.9953 161 1.0114 60.5263
0.1576 4.0 215 1.1557 65.1072
0.0986 4.9860 268 1.1991 64.1326
0.0639 5.9907 322 1.1858 54.3860
0.048 6.9953 376 1.2570 57.0175
0.0368 8.0 430 1.2571 56.2378
0.0341 8.9860 483 1.2981 68.0312
0.0257 9.8605 530 1.4269 63.4503

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
13
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for UDA-LIDI/openai-whisper-large-v3-fullFT-es_ecu911_V2martin_seg30s_samples

Finetuned
(426)
this model