Whisper openai-whisper-large-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the llamadas ecu911 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2501
  • Wer: 19.6292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5057 1.0 422 0.3380 35.0250
0.2061 2.0 844 0.2458 32.0536
0.1136 3.0 1266 0.2270 26.1110
0.0685 4.0 1688 0.2281 17.5388
0.0444 5.0 2110 0.2248 18.6169
0.0301 6.0 2532 0.2470 18.6037
0.0234 7.0 2954 0.2420 18.1699
0.019 8.0 3376 0.2368 21.5751
0.0163 9.0 3798 0.2346 15.9216
0.0142 10.0 4220 0.2501 19.6292

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
16
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for UDA-LIDI/openai-whisper-large-v3-fullFT-es_ecu911_V2martin_win30s_samples

Finetuned
(426)
this model