|
--- |
|
license: other |
|
license_name: umamusume-derivativework-guidelines |
|
license_link: https://umamusume.jp/derivativework_guidelines/ |
|
--- |
|
|
|
This is the model repository for ULTIMA-YOLOv9, containing the following checkpoints: |
|
- YOLO9-E |
|
|
|
# About **ULTIMA-YOLO** models |
|
|
|
This is a part of [ULTIMA](https://huggingface.co/datasets/UmaDiffusion/ULTIMA) project. |
|
|
|
ULTIMA-YOLOv9 model is a facial detection model for Uma Musumes in illustrations and based on [yolov9-e](https://arxiv.org/abs/2402.13616) and [ULTIMA-YOLO dataset](https://huggingface.co/datasets/UmaDiffusion/ULTIMA-YOLO) |
|
|
|
[ULTIMA Dataset](https://huggingface.co/datasets/UmaDiffusion/ULTIMA) is **U**ma Musume **L**abeled **T**ext-**I**mage **M**ultimodal **A**lignment Dataset. |
|
|
|
|
|
### How to Use |
|
|
|
Clone YOLOv9 repository. |
|
|
|
``` |
|
git clone https://github.com/WongKinYiu/yolov9.git |
|
cd yolov9 |
|
``` |
|
|
|
Download the weights using `hf_hub_download` and use the loading function in helpers of YOLOv9. |
|
|
|
```python |
|
from huggingface_hub import hf_hub_download |
|
hf_hub_download("UmaDiffusion/ULTIMA-YOLOv9", filename="ultima_yolov9-e.pt", local_dir="./") |
|
``` |
|
|
|
Load the model. |
|
|
|
```python |
|
# make sure you have the following dependencies |
|
import torch |
|
import numpy as np |
|
from models.common import DetectMultiBackend |
|
from utils.general import non_max_suppression, scale_boxes |
|
from utils.torch_utils import select_device, smart_inference_mode |
|
from utils.augmentations import letterbox |
|
import PIL.Image |
|
|
|
@smart_inference_mode() |
|
def predict(image_path, weights='ultima_yolov9-e.pt', imgsz=640, conf_thres=0.1, iou_thres=0.45): |
|
# Initialize |
|
device = select_device('0') |
|
model = DetectMultiBackend(weights='yolov9-e.pt', device="0", fp16=False, data='data/coco.yaml') |
|
stride, names, pt = model.stride, model.names, model.pt |
|
|
|
# Load image |
|
image = np.array(PIL.Image.open(image_path)) |
|
img = letterbox(img0, imgsz, stride=stride, auto=True)[0] |
|
img = img[:, :, ::-1].transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img) |
|
img = torch.from_numpy(img).to(device).float() |
|
img /= 255.0 |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
# Inference |
|
pred = model(img, augment=False, visualize=False) |
|
|
|
# Apply NMS |
|
pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000) |
|
``` |
|
|
|
|
|
|
|
|
|
|