yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8251
- Map: 0.5689
- Map 50: 0.837
- Map 75: 0.6378
- Map Small: -1.0
- Map Medium: 0.6185
- Map Large: 0.5762
- Mar 1: 0.4035
- Mar 10: 0.7088
- Mar 100: 0.7653
- Mar Small: -1.0
- Mar Medium: 0.7429
- Mar Large: 0.7707
- Map Banana: 0.4416
- Mar 100 Banana: 0.725
- Map Orange: 0.6177
- Mar 100 Orange: 0.7881
- Map Apple: 0.6474
- Mar 100 Apple: 0.7829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 1.9168 | 0.011 | 0.0267 | 0.0081 | -1.0 | 0.0161 | 0.0148 | 0.0442 | 0.1565 | 0.3206 | -1.0 | 0.1 | 0.3485 | 0.0136 | 0.4275 | 0.0 | 0.0 | 0.0193 | 0.5343 |
No log | 2.0 | 120 | 1.5461 | 0.0412 | 0.0965 | 0.0315 | -1.0 | 0.1493 | 0.0399 | 0.1579 | 0.273 | 0.449 | -1.0 | 0.3786 | 0.4512 | 0.0342 | 0.57 | 0.0194 | 0.1143 | 0.07 | 0.6629 |
No log | 3.0 | 180 | 1.2702 | 0.0734 | 0.1671 | 0.0639 | -1.0 | 0.1017 | 0.076 | 0.2463 | 0.387 | 0.5636 | -1.0 | 0.4357 | 0.5795 | 0.0961 | 0.615 | 0.0443 | 0.3214 | 0.0799 | 0.7543 |
No log | 4.0 | 240 | 1.2423 | 0.0813 | 0.1613 | 0.0758 | -1.0 | 0.2779 | 0.0743 | 0.2702 | 0.4558 | 0.6172 | -1.0 | 0.5357 | 0.6285 | 0.0907 | 0.6125 | 0.0486 | 0.4905 | 0.1046 | 0.7486 |
No log | 5.0 | 300 | 1.2186 | 0.1002 | 0.1958 | 0.0928 | -1.0 | 0.2011 | 0.0965 | 0.2551 | 0.4875 | 0.595 | -1.0 | 0.4643 | 0.612 | 0.0919 | 0.6275 | 0.0925 | 0.4262 | 0.1163 | 0.7314 |
No log | 6.0 | 360 | 1.0360 | 0.1936 | 0.3298 | 0.2149 | -1.0 | 0.3235 | 0.1842 | 0.3295 | 0.5887 | 0.6991 | -1.0 | 0.5857 | 0.7157 | 0.1859 | 0.705 | 0.1827 | 0.581 | 0.2124 | 0.8114 |
No log | 7.0 | 420 | 1.0435 | 0.3418 | 0.5496 | 0.3768 | -1.0 | 0.4263 | 0.3516 | 0.3779 | 0.6207 | 0.7223 | -1.0 | 0.6429 | 0.7387 | 0.2188 | 0.6575 | 0.3071 | 0.6952 | 0.4995 | 0.8143 |
No log | 8.0 | 480 | 0.9763 | 0.3733 | 0.5963 | 0.4304 | -1.0 | 0.4576 | 0.384 | 0.3477 | 0.6131 | 0.7203 | -1.0 | 0.6643 | 0.7299 | 0.2579 | 0.6875 | 0.3948 | 0.7619 | 0.4673 | 0.7114 |
1.2819 | 9.0 | 540 | 0.9729 | 0.4048 | 0.6491 | 0.4533 | -1.0 | 0.4535 | 0.4208 | 0.3606 | 0.6365 | 0.7297 | -1.0 | 0.6786 | 0.7392 | 0.317 | 0.6925 | 0.4198 | 0.7595 | 0.4778 | 0.7371 |
1.2819 | 10.0 | 600 | 0.9867 | 0.4522 | 0.7245 | 0.5204 | -1.0 | 0.5405 | 0.4528 | 0.3633 | 0.6438 | 0.733 | -1.0 | 0.65 | 0.7462 | 0.3247 | 0.71 | 0.471 | 0.7405 | 0.561 | 0.7486 |
1.2819 | 11.0 | 660 | 0.8974 | 0.4976 | 0.7352 | 0.561 | -1.0 | 0.6327 | 0.4956 | 0.394 | 0.6717 | 0.7571 | -1.0 | 0.7214 | 0.7652 | 0.3346 | 0.705 | 0.5363 | 0.7833 | 0.622 | 0.7829 |
1.2819 | 12.0 | 720 | 0.9062 | 0.5042 | 0.8019 | 0.566 | -1.0 | 0.5781 | 0.5131 | 0.3774 | 0.6703 | 0.7594 | -1.0 | 0.7071 | 0.7702 | 0.3796 | 0.715 | 0.5031 | 0.769 | 0.6301 | 0.7943 |
1.2819 | 13.0 | 780 | 0.8927 | 0.5136 | 0.79 | 0.5867 | -1.0 | 0.6444 | 0.514 | 0.3724 | 0.6983 | 0.7641 | -1.0 | 0.7286 | 0.7736 | 0.3486 | 0.7 | 0.5547 | 0.781 | 0.6374 | 0.8114 |
1.2819 | 14.0 | 840 | 0.9009 | 0.507 | 0.7814 | 0.5461 | -1.0 | 0.5907 | 0.5186 | 0.3919 | 0.691 | 0.7621 | -1.0 | 0.7 | 0.7754 | 0.3471 | 0.7025 | 0.5375 | 0.7667 | 0.6364 | 0.8171 |
1.2819 | 15.0 | 900 | 0.8588 | 0.5349 | 0.7915 | 0.607 | -1.0 | 0.5704 | 0.5479 | 0.404 | 0.6791 | 0.7604 | -1.0 | 0.7143 | 0.7677 | 0.3818 | 0.7425 | 0.5783 | 0.7643 | 0.6445 | 0.7743 |
1.2819 | 16.0 | 960 | 0.8809 | 0.5314 | 0.8154 | 0.599 | -1.0 | 0.5413 | 0.5484 | 0.4085 | 0.6689 | 0.7546 | -1.0 | 0.7143 | 0.7613 | 0.4064 | 0.7225 | 0.5545 | 0.7643 | 0.6334 | 0.7771 |
0.7 | 17.0 | 1020 | 0.8626 | 0.5402 | 0.823 | 0.601 | -1.0 | 0.5705 | 0.5557 | 0.4038 | 0.6979 | 0.767 | -1.0 | 0.7214 | 0.7739 | 0.4157 | 0.7525 | 0.5728 | 0.7857 | 0.632 | 0.7629 |
0.7 | 18.0 | 1080 | 0.8723 | 0.5431 | 0.8142 | 0.615 | -1.0 | 0.5579 | 0.556 | 0.3902 | 0.6911 | 0.7657 | -1.0 | 0.7357 | 0.7717 | 0.4201 | 0.73 | 0.5923 | 0.7786 | 0.617 | 0.7886 |
0.7 | 19.0 | 1140 | 0.8407 | 0.558 | 0.8205 | 0.6471 | -1.0 | 0.5592 | 0.5833 | 0.4172 | 0.7085 | 0.7793 | -1.0 | 0.7286 | 0.7905 | 0.4215 | 0.725 | 0.5807 | 0.7786 | 0.6719 | 0.8343 |
0.7 | 20.0 | 1200 | 0.8675 | 0.5656 | 0.8479 | 0.6415 | -1.0 | 0.5875 | 0.5785 | 0.4039 | 0.697 | 0.7698 | -1.0 | 0.75 | 0.7743 | 0.4318 | 0.735 | 0.6069 | 0.7857 | 0.6579 | 0.7886 |
0.7 | 21.0 | 1260 | 0.8636 | 0.5601 | 0.8313 | 0.6211 | -1.0 | 0.6281 | 0.5637 | 0.4085 | 0.6962 | 0.7611 | -1.0 | 0.7357 | 0.7662 | 0.4335 | 0.73 | 0.607 | 0.7905 | 0.6399 | 0.7629 |
0.7 | 22.0 | 1320 | 0.8463 | 0.567 | 0.827 | 0.6541 | -1.0 | 0.6092 | 0.5758 | 0.4168 | 0.7023 | 0.7797 | -1.0 | 0.7357 | 0.7888 | 0.4327 | 0.73 | 0.6211 | 0.8119 | 0.6472 | 0.7971 |
0.7 | 23.0 | 1380 | 0.8397 | 0.5704 | 0.8411 | 0.6472 | -1.0 | 0.6288 | 0.579 | 0.4068 | 0.7036 | 0.7723 | -1.0 | 0.7357 | 0.7804 | 0.4259 | 0.7225 | 0.6243 | 0.8 | 0.661 | 0.7943 |
0.7 | 24.0 | 1440 | 0.8512 | 0.5627 | 0.829 | 0.6446 | -1.0 | 0.6038 | 0.5722 | 0.404 | 0.7019 | 0.7693 | -1.0 | 0.75 | 0.7748 | 0.4261 | 0.725 | 0.6236 | 0.7857 | 0.6383 | 0.7971 |
0.5208 | 25.0 | 1500 | 0.8526 | 0.5704 | 0.843 | 0.6505 | -1.0 | 0.6087 | 0.584 | 0.412 | 0.7165 | 0.7754 | -1.0 | 0.7429 | 0.7837 | 0.4288 | 0.7175 | 0.6141 | 0.7857 | 0.6684 | 0.8229 |
0.5208 | 26.0 | 1560 | 0.8459 | 0.5683 | 0.8447 | 0.6421 | -1.0 | 0.6012 | 0.5795 | 0.4175 | 0.7115 | 0.7681 | -1.0 | 0.7429 | 0.7748 | 0.4402 | 0.72 | 0.6091 | 0.7786 | 0.6555 | 0.8057 |
0.5208 | 27.0 | 1620 | 0.8259 | 0.5724 | 0.847 | 0.6408 | -1.0 | 0.6195 | 0.5806 | 0.4146 | 0.7185 | 0.7724 | -1.0 | 0.75 | 0.7789 | 0.4418 | 0.7225 | 0.6132 | 0.7833 | 0.6621 | 0.8114 |
0.5208 | 28.0 | 1680 | 0.8257 | 0.5728 | 0.8404 | 0.6418 | -1.0 | 0.6191 | 0.5812 | 0.4127 | 0.718 | 0.7744 | -1.0 | 0.7429 | 0.7818 | 0.4424 | 0.7275 | 0.616 | 0.7929 | 0.66 | 0.8029 |
0.5208 | 29.0 | 1740 | 0.8261 | 0.5689 | 0.837 | 0.6377 | -1.0 | 0.6193 | 0.5761 | 0.4035 | 0.708 | 0.7661 | -1.0 | 0.75 | 0.7707 | 0.4415 | 0.725 | 0.6176 | 0.7905 | 0.6476 | 0.7829 |
0.5208 | 30.0 | 1800 | 0.8251 | 0.5689 | 0.837 | 0.6378 | -1.0 | 0.6185 | 0.5762 | 0.4035 | 0.7088 | 0.7653 | -1.0 | 0.7429 | 0.7707 | 0.4416 | 0.725 | 0.6177 | 0.7881 | 0.6474 | 0.7829 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Unax14/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny