yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8251
  • Map: 0.5689
  • Map 50: 0.837
  • Map 75: 0.6378
  • Map Small: -1.0
  • Map Medium: 0.6185
  • Map Large: 0.5762
  • Mar 1: 0.4035
  • Mar 10: 0.7088
  • Mar 100: 0.7653
  • Mar Small: -1.0
  • Mar Medium: 0.7429
  • Mar Large: 0.7707
  • Map Banana: 0.4416
  • Mar 100 Banana: 0.725
  • Map Orange: 0.6177
  • Mar 100 Orange: 0.7881
  • Map Apple: 0.6474
  • Mar 100 Apple: 0.7829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.9168 0.011 0.0267 0.0081 -1.0 0.0161 0.0148 0.0442 0.1565 0.3206 -1.0 0.1 0.3485 0.0136 0.4275 0.0 0.0 0.0193 0.5343
No log 2.0 120 1.5461 0.0412 0.0965 0.0315 -1.0 0.1493 0.0399 0.1579 0.273 0.449 -1.0 0.3786 0.4512 0.0342 0.57 0.0194 0.1143 0.07 0.6629
No log 3.0 180 1.2702 0.0734 0.1671 0.0639 -1.0 0.1017 0.076 0.2463 0.387 0.5636 -1.0 0.4357 0.5795 0.0961 0.615 0.0443 0.3214 0.0799 0.7543
No log 4.0 240 1.2423 0.0813 0.1613 0.0758 -1.0 0.2779 0.0743 0.2702 0.4558 0.6172 -1.0 0.5357 0.6285 0.0907 0.6125 0.0486 0.4905 0.1046 0.7486
No log 5.0 300 1.2186 0.1002 0.1958 0.0928 -1.0 0.2011 0.0965 0.2551 0.4875 0.595 -1.0 0.4643 0.612 0.0919 0.6275 0.0925 0.4262 0.1163 0.7314
No log 6.0 360 1.0360 0.1936 0.3298 0.2149 -1.0 0.3235 0.1842 0.3295 0.5887 0.6991 -1.0 0.5857 0.7157 0.1859 0.705 0.1827 0.581 0.2124 0.8114
No log 7.0 420 1.0435 0.3418 0.5496 0.3768 -1.0 0.4263 0.3516 0.3779 0.6207 0.7223 -1.0 0.6429 0.7387 0.2188 0.6575 0.3071 0.6952 0.4995 0.8143
No log 8.0 480 0.9763 0.3733 0.5963 0.4304 -1.0 0.4576 0.384 0.3477 0.6131 0.7203 -1.0 0.6643 0.7299 0.2579 0.6875 0.3948 0.7619 0.4673 0.7114
1.2819 9.0 540 0.9729 0.4048 0.6491 0.4533 -1.0 0.4535 0.4208 0.3606 0.6365 0.7297 -1.0 0.6786 0.7392 0.317 0.6925 0.4198 0.7595 0.4778 0.7371
1.2819 10.0 600 0.9867 0.4522 0.7245 0.5204 -1.0 0.5405 0.4528 0.3633 0.6438 0.733 -1.0 0.65 0.7462 0.3247 0.71 0.471 0.7405 0.561 0.7486
1.2819 11.0 660 0.8974 0.4976 0.7352 0.561 -1.0 0.6327 0.4956 0.394 0.6717 0.7571 -1.0 0.7214 0.7652 0.3346 0.705 0.5363 0.7833 0.622 0.7829
1.2819 12.0 720 0.9062 0.5042 0.8019 0.566 -1.0 0.5781 0.5131 0.3774 0.6703 0.7594 -1.0 0.7071 0.7702 0.3796 0.715 0.5031 0.769 0.6301 0.7943
1.2819 13.0 780 0.8927 0.5136 0.79 0.5867 -1.0 0.6444 0.514 0.3724 0.6983 0.7641 -1.0 0.7286 0.7736 0.3486 0.7 0.5547 0.781 0.6374 0.8114
1.2819 14.0 840 0.9009 0.507 0.7814 0.5461 -1.0 0.5907 0.5186 0.3919 0.691 0.7621 -1.0 0.7 0.7754 0.3471 0.7025 0.5375 0.7667 0.6364 0.8171
1.2819 15.0 900 0.8588 0.5349 0.7915 0.607 -1.0 0.5704 0.5479 0.404 0.6791 0.7604 -1.0 0.7143 0.7677 0.3818 0.7425 0.5783 0.7643 0.6445 0.7743
1.2819 16.0 960 0.8809 0.5314 0.8154 0.599 -1.0 0.5413 0.5484 0.4085 0.6689 0.7546 -1.0 0.7143 0.7613 0.4064 0.7225 0.5545 0.7643 0.6334 0.7771
0.7 17.0 1020 0.8626 0.5402 0.823 0.601 -1.0 0.5705 0.5557 0.4038 0.6979 0.767 -1.0 0.7214 0.7739 0.4157 0.7525 0.5728 0.7857 0.632 0.7629
0.7 18.0 1080 0.8723 0.5431 0.8142 0.615 -1.0 0.5579 0.556 0.3902 0.6911 0.7657 -1.0 0.7357 0.7717 0.4201 0.73 0.5923 0.7786 0.617 0.7886
0.7 19.0 1140 0.8407 0.558 0.8205 0.6471 -1.0 0.5592 0.5833 0.4172 0.7085 0.7793 -1.0 0.7286 0.7905 0.4215 0.725 0.5807 0.7786 0.6719 0.8343
0.7 20.0 1200 0.8675 0.5656 0.8479 0.6415 -1.0 0.5875 0.5785 0.4039 0.697 0.7698 -1.0 0.75 0.7743 0.4318 0.735 0.6069 0.7857 0.6579 0.7886
0.7 21.0 1260 0.8636 0.5601 0.8313 0.6211 -1.0 0.6281 0.5637 0.4085 0.6962 0.7611 -1.0 0.7357 0.7662 0.4335 0.73 0.607 0.7905 0.6399 0.7629
0.7 22.0 1320 0.8463 0.567 0.827 0.6541 -1.0 0.6092 0.5758 0.4168 0.7023 0.7797 -1.0 0.7357 0.7888 0.4327 0.73 0.6211 0.8119 0.6472 0.7971
0.7 23.0 1380 0.8397 0.5704 0.8411 0.6472 -1.0 0.6288 0.579 0.4068 0.7036 0.7723 -1.0 0.7357 0.7804 0.4259 0.7225 0.6243 0.8 0.661 0.7943
0.7 24.0 1440 0.8512 0.5627 0.829 0.6446 -1.0 0.6038 0.5722 0.404 0.7019 0.7693 -1.0 0.75 0.7748 0.4261 0.725 0.6236 0.7857 0.6383 0.7971
0.5208 25.0 1500 0.8526 0.5704 0.843 0.6505 -1.0 0.6087 0.584 0.412 0.7165 0.7754 -1.0 0.7429 0.7837 0.4288 0.7175 0.6141 0.7857 0.6684 0.8229
0.5208 26.0 1560 0.8459 0.5683 0.8447 0.6421 -1.0 0.6012 0.5795 0.4175 0.7115 0.7681 -1.0 0.7429 0.7748 0.4402 0.72 0.6091 0.7786 0.6555 0.8057
0.5208 27.0 1620 0.8259 0.5724 0.847 0.6408 -1.0 0.6195 0.5806 0.4146 0.7185 0.7724 -1.0 0.75 0.7789 0.4418 0.7225 0.6132 0.7833 0.6621 0.8114
0.5208 28.0 1680 0.8257 0.5728 0.8404 0.6418 -1.0 0.6191 0.5812 0.4127 0.718 0.7744 -1.0 0.7429 0.7818 0.4424 0.7275 0.616 0.7929 0.66 0.8029
0.5208 29.0 1740 0.8261 0.5689 0.837 0.6377 -1.0 0.6193 0.5761 0.4035 0.708 0.7661 -1.0 0.75 0.7707 0.4415 0.725 0.6176 0.7905 0.6476 0.7829
0.5208 30.0 1800 0.8251 0.5689 0.837 0.6378 -1.0 0.6185 0.5762 0.4035 0.7088 0.7653 -1.0 0.7429 0.7707 0.4416 0.725 0.6177 0.7881 0.6474 0.7829

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Unax14/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(31)
this model