Files changed (1) hide show
  1. README.md +172 -158
README.md CHANGED
@@ -1,159 +1,173 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-0.5B
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: e7732a70-ca77-4feb-8897-396abc6097f1
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- accelerate_config:
22
- dynamo_backend: inductor
23
- mixed_precision: bf16
24
- num_machines: 1
25
- num_processes: auto
26
- use_cpu: false
27
- adapter: lora
28
- base_model: Qwen/Qwen2.5-0.5B
29
- bf16: auto
30
- chat_template: llama3
31
- dataset_prepared_path: null
32
- datasets:
33
- - data_files:
34
- - 3055aeccdac79880_train_data.json
35
- ds_type: json
36
- field: source
37
- path: /workspace/input_data/3055aeccdac79880_train_data.json
38
- type: completion
39
- debug: null
40
- deepspeed: null
41
- device_map: auto
42
- early_stopping_patience: null
43
- eval_max_new_tokens: 128
44
- eval_table_size: null
45
- evals_per_epoch: 4
46
- flash_attention: false
47
- fp16: null
48
- fsdp: null
49
- fsdp_config: null
50
- gradient_accumulation_steps: 16
51
- gradient_checkpointing: true
52
- group_by_length: false
53
- hub_model_id: VERSIL91/e7732a70-ca77-4feb-8897-396abc6097f1
54
- hub_repo: null
55
- hub_strategy: checkpoint
56
- hub_token: null
57
- learning_rate: 0.0001
58
- local_rank: null
59
- logging_steps: 1
60
- lora_alpha: 32
61
- lora_dropout: 0.05
62
- lora_fan_in_fan_out: null
63
- lora_model_dir: null
64
- lora_r: 16
65
- lora_target_linear: true
66
- lora_target_modules:
67
- - q_proj
68
- - v_proj
69
- lr_scheduler: cosine
70
- max_memory:
71
- 0: 70GiB
72
- max_steps: 50
73
- micro_batch_size: 2
74
- mlflow_experiment_name: /tmp/3055aeccdac79880_train_data.json
75
- model_type: AutoModelForCausalLM
76
- num_epochs: 1
77
- optimizer: adamw_bnb_8bit
78
- output_dir: miner_id_24
79
- pad_to_sequence_len: true
80
- quantization_config:
81
- llm_int8_enable_fp32_cpu_offload: true
82
- load_in_8bit: true
83
- resume_from_checkpoint: null
84
- s2_attention: null
85
- sample_packing: false
86
- saves_per_epoch: 4
87
- sequence_len: 4056
88
- strict: false
89
- tf32: false
90
- tokenizer_type: AutoTokenizer
91
- torch_compile: true
92
- train_on_inputs: false
93
- trust_remote_code: true
94
- val_set_size: 0.05
95
- wandb_entity: null
96
- wandb_mode: online
97
- wandb_name: e7732a70-ca77-4feb-8897-396abc6097f1
98
- wandb_project: Gradients-On-Demand
99
- wandb_run: your_name
100
- wandb_runid: e7732a70-ca77-4feb-8897-396abc6097f1
101
- warmup_steps: 10
102
- weight_decay: 0.0
103
- xformers_attention: null
104
-
105
- ```
106
-
107
- </details><br>
108
-
109
- # e7732a70-ca77-4feb-8897-396abc6097f1
110
-
111
- This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
112
- It achieves the following results on the evaluation set:
113
- - Loss: 0.0546
114
-
115
- ## Model description
116
-
117
- More information needed
118
-
119
- ## Intended uses & limitations
120
-
121
- More information needed
122
-
123
- ## Training and evaluation data
124
-
125
- More information needed
126
-
127
- ## Training procedure
128
-
129
- ### Training hyperparameters
130
-
131
- The following hyperparameters were used during training:
132
- - learning_rate: 0.0001
133
- - train_batch_size: 2
134
- - eval_batch_size: 2
135
- - seed: 42
136
- - gradient_accumulation_steps: 16
137
- - total_train_batch_size: 32
138
- - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
139
- - lr_scheduler_type: cosine
140
- - lr_scheduler_warmup_steps: 10
141
- - training_steps: 50
142
-
143
- ### Training results
144
-
145
- | Training Loss | Epoch | Step | Validation Loss |
146
- |:-------------:|:------:|:----:|:---------------:|
147
- | 3.63 | 0.0001 | 1 | 3.6769 |
148
- | 0.2115 | 0.0013 | 13 | 0.2437 |
149
- | 0.0296 | 0.0026 | 26 | 0.0758 |
150
- | 0.0462 | 0.0040 | 39 | 0.0546 |
151
-
152
-
153
- ### Framework versions
154
-
155
- - PEFT 0.13.2
156
- - Transformers 4.46.0
157
- - Pytorch 2.5.0+cu124
158
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-0.5B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: e7732a70-ca77-4feb-8897-396abc6097f1
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ accelerate_config:
36
+ dynamo_backend: inductor
37
+ mixed_precision: bf16
38
+ num_machines: 1
39
+ num_processes: auto
40
+ use_cpu: false
41
+ adapter: lora
42
+ base_model: Qwen/Qwen2.5-0.5B
43
+ bf16: auto
44
+ chat_template: llama3
45
+ dataset_prepared_path: null
46
+ datasets:
47
+ - data_files:
48
+ - 3055aeccdac79880_train_data.json
49
+ ds_type: json
50
+ field: source
51
+ path: /workspace/input_data/3055aeccdac79880_train_data.json
52
+ type: completion
53
+ debug: null
54
+ deepspeed: null
55
+ device_map: auto
56
+ early_stopping_patience: null
57
+ eval_max_new_tokens: 128
58
+ eval_table_size: null
59
+ evals_per_epoch: 4
60
+ flash_attention: false
61
+ fp16: null
62
+ fsdp: null
63
+ fsdp_config: null
64
+ gradient_accumulation_steps: 16
65
+ gradient_checkpointing: true
66
+ group_by_length: false
67
+ hub_model_id: VERSIL91/e7732a70-ca77-4feb-8897-396abc6097f1
68
+ hub_repo: null
69
+ hub_strategy: checkpoint
70
+ hub_token: null
71
+ learning_rate: 0.0001
72
+ local_rank: null
73
+ logging_steps: 1
74
+ lora_alpha: 32
75
+ lora_dropout: 0.05
76
+ lora_fan_in_fan_out: null
77
+ lora_model_dir: null
78
+ lora_r: 16
79
+ lora_target_linear: true
80
+ lora_target_modules:
81
+ - q_proj
82
+ - v_proj
83
+ lr_scheduler: cosine
84
+ max_memory:
85
+ 0: 70GiB
86
+ max_steps: 50
87
+ micro_batch_size: 2
88
+ mlflow_experiment_name: /tmp/3055aeccdac79880_train_data.json
89
+ model_type: AutoModelForCausalLM
90
+ num_epochs: 1
91
+ optimizer: adamw_bnb_8bit
92
+ output_dir: miner_id_24
93
+ pad_to_sequence_len: true
94
+ quantization_config:
95
+ llm_int8_enable_fp32_cpu_offload: true
96
+ load_in_8bit: true
97
+ resume_from_checkpoint: null
98
+ s2_attention: null
99
+ sample_packing: false
100
+ saves_per_epoch: 4
101
+ sequence_len: 4056
102
+ strict: false
103
+ tf32: false
104
+ tokenizer_type: AutoTokenizer
105
+ torch_compile: true
106
+ train_on_inputs: false
107
+ trust_remote_code: true
108
+ val_set_size: 0.05
109
+ wandb_entity: null
110
+ wandb_mode: online
111
+ wandb_name: e7732a70-ca77-4feb-8897-396abc6097f1
112
+ wandb_project: Gradients-On-Demand
113
+ wandb_run: your_name
114
+ wandb_runid: e7732a70-ca77-4feb-8897-396abc6097f1
115
+ warmup_steps: 10
116
+ weight_decay: 0.0
117
+ xformers_attention: null
118
+
119
+ ```
120
+
121
+ </details><br>
122
+
123
+ # e7732a70-ca77-4feb-8897-396abc6097f1
124
+
125
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
126
+ It achieves the following results on the evaluation set:
127
+ - Loss: 0.0546
128
+
129
+ ## Model description
130
+
131
+ More information needed
132
+
133
+ ## Intended uses & limitations
134
+
135
+ More information needed
136
+
137
+ ## Training and evaluation data
138
+
139
+ More information needed
140
+
141
+ ## Training procedure
142
+
143
+ ### Training hyperparameters
144
+
145
+ The following hyperparameters were used during training:
146
+ - learning_rate: 0.0001
147
+ - train_batch_size: 2
148
+ - eval_batch_size: 2
149
+ - seed: 42
150
+ - gradient_accumulation_steps: 16
151
+ - total_train_batch_size: 32
152
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
153
+ - lr_scheduler_type: cosine
154
+ - lr_scheduler_warmup_steps: 10
155
+ - training_steps: 50
156
+
157
+ ### Training results
158
+
159
+ | Training Loss | Epoch | Step | Validation Loss |
160
+ |:-------------:|:------:|:----:|:---------------:|
161
+ | 3.63 | 0.0001 | 1 | 3.6769 |
162
+ | 0.2115 | 0.0013 | 13 | 0.2437 |
163
+ | 0.0296 | 0.0026 | 26 | 0.0758 |
164
+ | 0.0462 | 0.0040 | 39 | 0.0546 |
165
+
166
+
167
+ ### Framework versions
168
+
169
+ - PEFT 0.13.2
170
+ - Transformers 4.46.0
171
+ - Pytorch 2.5.0+cu124
172
+ - Datasets 3.0.1
173
  - Tokenizers 0.20.1