Whisper Large Ro - VM2

This model is a fine-tuned version of openai/whisper-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1650
  • Wer: 6.0193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 3000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0978 1.2063 1000 0.1440 69.1424
0.0593 2.4125 2000 0.1349 19.0102
0.0479 3.6188 3000 0.1423 12.2152
0.0313 4.8251 4000 0.1407 8.6577
0.0115 6.0314 5000 0.1427 7.9429
0.0094 7.2376 6000 0.1444 7.4316
0.0063 8.4439 7000 0.1483 7.2524
0.0068 9.6502 8000 0.1517 7.2168
0.0047 10.8565 9000 0.1533 7.1072
0.0028 12.0627 10000 0.1560 6.6211
0.0027 13.2690 11000 0.1539 6.6994
0.0014 14.4753 12000 0.1528 6.5063
0.0012 15.6815 13000 0.1571 6.4202
0.0008 16.8878 14000 0.1592 6.4315
0.0002 18.0941 15000 0.1577 6.4602
0.0002 19.3004 16000 0.1588 6.1907
0.0001 20.5066 17000 0.1607 6.0776
0.0 21.7129 18000 0.1621 6.0402
0.0 22.9192 19000 0.1643 6.0611
0.0 24.1255 20000 0.1650 6.0193

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
31
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for VMadalina/whisper-large-news-augmented2

Finetuned
(88)
this model