Commit
·
5de38e4
1
Parent(s):
0123efb
Update README.md
Browse files
README.md
CHANGED
@@ -37,55 +37,55 @@ It achieves the following results on the evaluation set:
|
|
37 |
## Usage Example
|
38 |
|
39 |
```python
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
```
|
90 |
|
91 |
|
|
|
37 |
## Usage Example
|
38 |
|
39 |
```python
|
40 |
+
from transformers import BertTokenizer, BertForSequenceClassification, TrainingArguments, Trainer, DataCollatorWithPadding
|
41 |
+
import datasets
|
42 |
+
|
43 |
+
model = BertForSequenceClassification.from_pretrained('VityaVitalich/bert-tiny-sst2')
|
44 |
+
tokenizer = BertTokenizer.from_pretrained('M-FAC/bert-tiny-finetuned-sst2')
|
45 |
+
|
46 |
+
def create_data(tokenizer):
|
47 |
+
train_set = datasets.load_dataset('sst2', split='train').remove_columns(['idx'])
|
48 |
+
val_set = datasets.load_dataset('sst2', split='validation').remove_columns(['idx'])
|
49 |
+
|
50 |
+
def tokenize_func(examples):
|
51 |
+
return tokenizer(examples["sentence"], max_length=128, padding='max_length', truncation=True)
|
52 |
+
|
53 |
+
encoded_dataset_train = train_set.map(tokenize_func, batched=True)
|
54 |
+
encoded_dataset_test = val_set.map(tokenize_func, batched=True)
|
55 |
+
data_collator = DataCollatorWithPadding(tokenizer)
|
56 |
+
return encoded_dataset_train, encoded_dataset_test, data_collator
|
57 |
+
|
58 |
+
encoded_dataset_train, encoded_dataset_test, data_collator = create_data(tokenizer)
|
59 |
+
|
60 |
+
training_args = TrainingArguments(
|
61 |
+
output_dir='./results',
|
62 |
+
learning_rate=3e-5,
|
63 |
+
per_device_train_batch_size=128,
|
64 |
+
per_device_eval_batch_size=128,
|
65 |
+
load_best_model_at_end=True,
|
66 |
+
num_train_epochs=5,
|
67 |
+
weight_decay=0.1,
|
68 |
+
fp16=True,
|
69 |
+
fp16_full_eval=True,
|
70 |
+
evaluation_strategy="epoch",
|
71 |
+
seed=42,
|
72 |
+
save_strategy = "epoch",
|
73 |
+
save_total_limit=5,
|
74 |
+
logging_strategy="epoch",
|
75 |
+
report_to="all",
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
trainer = Trainer(
|
80 |
+
model=model,
|
81 |
+
args=training_args,
|
82 |
+
train_dataset=encoded_dataset_train,
|
83 |
+
eval_dataset=encoded_dataset_test,
|
84 |
+
data_collator=data_collator,
|
85 |
+
compute_metrics=compute_metrics,
|
86 |
+
)
|
87 |
+
|
88 |
+
trainer.evaluate(encoded_dataset_test)
|
89 |
```
|
90 |
|
91 |
|