Vladimirlv's picture
Model save
70e0836 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-960h-heart-sounds
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8673780487804879

Visualize in Weights & Biases Visualize in Weights & Biases

wav2vec2-base-960h-heart-sounds

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3595
  • Accuracy: 0.8674

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9791 1.0 83 0.9290 0.5442
0.6532 2.0 166 0.5495 0.8186
0.5202 3.0 249 0.4569 0.8216
0.4421 4.0 332 0.4378 0.8399
0.4144 5.0 415 0.3853 0.8765
0.4213 6.0 498 0.3835 0.8537
0.3819 7.0 581 0.3647 0.8674
0.3994 7.9119 656 0.3595 0.8674

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.0.1+cu118
  • Datasets 3.3.2
  • Tokenizers 0.21.0