VLM 1 K2

  • Second model of VLM series (Vortex Language Model)
  • K stands for Knowledge (Higher is better)

Use the model:

  • Open Google Colab
  • Create new notebook
  • Paste this code in the cell:
!pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "VortexIntelligence/VLM-1-K2"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

print("VLM Chat\nType 'exit' to quit")

while True:
    user_input = input("You: ")
    if user_input.strip().lower() == "exit":
        break

    input_ids = tokenizer(user_input, return_tensors="pt").input_ids
    input_ids = input_ids[:, -1024:]

    with torch.no_grad():
        output = model.generate(
            input_ids,
            max_new_tokens=50,
            do_sample=True,
            temperature=0.7,
            top_p=0.9,
            pad_token_id=tokenizer.eos_token_id
        )

    new_tokens = output[0][input_ids.shape[1]:]
    response = tokenizer.decode(new_tokens, skip_special_tokens=True)

    print("VLM:", response.strip())
Downloads last month
40
Safetensors
Model size
124M params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for VortexIntelligence/VLM-1-K2

Quantizations
2 models

Space using VortexIntelligence/VLM-1-K2 1

Collection including VortexIntelligence/VLM-1-K2