SegFormer_b3_mappillary_

This model is a fine-tuned version of nvidia/segformer-b3-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9465
  • Mean Iou: 0.6876
  • Mean Accuracy: 0.8034
  • Overall Accuracy: 0.9418
  • Accuracy Construction--barrier--fence: 0.6800
  • Accuracy Construction--barrier--guard-rail: 0.8164
  • Accuracy Construction--barrier--other-barrier: 0.6949
  • Accuracy Construction--barrier--wall: 0.6949
  • Accuracy Construction--flat--road: 0.9600
  • Accuracy Construction--flat--service-lane: 0.6083
  • Accuracy Construction--flat--sidewalk: 0.8963
  • Accuracy Construction--structure--building: 0.9474
  • Accuracy Human--person: 0.8455
  • Accuracy Human--rider--bicyclist: 0.7457
  • Accuracy Marking--crosswalk-zebra: 0.8079
  • Accuracy Marking--general: 0.7057
  • Accuracy Nature--sky: 0.9903
  • Accuracy Nature--terrain: 0.8351
  • Accuracy Nature--vegetation: 0.9468
  • Accuracy Object--support--pole: 0.5784
  • Accuracy Object--support--traffic-sign-frame: 0.6875
  • Accuracy Object--traffic-light: 0.7517
  • Accuracy Object--traffic-sign--front: 0.8324
  • Accuracy Object--vehicle--bicycle: 0.7600
  • Accuracy Object--vehicle--bus: 0.8898
  • Accuracy Object--vehicle--car: 0.9598
  • Accuracy Object--vehicle--truck: 0.8427
  • Iou Construction--barrier--fence: 0.5668
  • Iou Construction--barrier--guard-rail: 0.6378
  • Iou Construction--barrier--other-barrier: 0.5595
  • Iou Construction--barrier--wall: 0.5403
  • Iou Construction--flat--road: 0.9205
  • Iou Construction--flat--service-lane: 0.4618
  • Iou Construction--flat--sidewalk: 0.7968
  • Iou Construction--structure--building: 0.8891
  • Iou Human--person: 0.6797
  • Iou Human--rider--bicyclist: 0.5718
  • Iou Marking--crosswalk-zebra: 0.7125
  • Iou Marking--general: 0.5860
  • Iou Nature--sky: 0.9811
  • Iou Nature--terrain: 0.6872
  • Iou Nature--vegetation: 0.8949
  • Iou Object--support--pole: 0.4599
  • Iou Object--support--traffic-sign-frame: 0.5531
  • Iou Object--traffic-light: 0.5835
  • Iou Object--traffic-sign--front: 0.7231
  • Iou Object--vehicle--bicycle: 0.5797
  • Iou Object--vehicle--bus: 0.7946
  • Iou Object--vehicle--car: 0.9055
  • Iou Object--vehicle--truck: 0.7304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Construction--barrier--fence Accuracy Construction--barrier--guard-rail Accuracy Construction--barrier--other-barrier Accuracy Construction--barrier--wall Accuracy Construction--flat--road Accuracy Construction--flat--service-lane Accuracy Construction--flat--sidewalk Accuracy Construction--structure--building Accuracy Human--person Accuracy Human--rider--bicyclist Accuracy Marking--crosswalk-zebra Accuracy Marking--general Accuracy Nature--sky Accuracy Nature--terrain Accuracy Nature--vegetation Accuracy Object--support--pole Accuracy Object--support--traffic-sign-frame Accuracy Object--traffic-light Accuracy Object--traffic-sign--front Accuracy Object--vehicle--bicycle Accuracy Object--vehicle--bus Accuracy Object--vehicle--car Accuracy Object--vehicle--truck Iou Construction--barrier--fence Iou Construction--barrier--guard-rail Iou Construction--barrier--other-barrier Iou Construction--barrier--wall Iou Construction--flat--road Iou Construction--flat--service-lane Iou Construction--flat--sidewalk Iou Construction--structure--building Iou Human--person Iou Human--rider--bicyclist Iou Marking--crosswalk-zebra Iou Marking--general Iou Nature--sky Iou Nature--terrain Iou Nature--vegetation Iou Object--support--pole Iou Object--support--traffic-sign-frame Iou Object--traffic-light Iou Object--traffic-sign--front Iou Object--vehicle--bicycle Iou Object--vehicle--bus Iou Object--vehicle--car Iou Object--vehicle--truck
1.3425 0.4444 1000 1.2765 0.2545 0.3044 0.8800 0.6134 0.0 0.0033 0.0266 0.9695 0.0 0.7990 0.9191 0.0001 0.0 0.0000 0.0467 0.9827 0.6667 0.9530 0.0001 0.0 0.0 0.0845 0.0 0.0000 0.9361 0.0 0.3190 0.0 0.0033 0.0263 0.8350 0.0 0.6117 0.8074 0.0001 0.0 0.0000 0.0426 0.9577 0.5511 0.8295 0.0001 0.0 0.0 0.0842 0.0 0.0000 0.7854 0.0
1.1254 0.8889 2000 1.0846 0.4898 0.5869 0.9169 0.6043 0.7972 0.5664 0.5400 0.9357 0.0 0.8852 0.9351 0.6966 0.0 0.6074 0.5823 0.9887 0.8180 0.9342 0.4084 0.0 0.0577 0.7376 0.0 0.7325 0.9520 0.7184 0.4699 0.4923 0.4243 0.4304 0.8822 0.0 0.6986 0.8531 0.5266 0.0 0.5141 0.4423 0.9723 0.6271 0.8680 0.3223 0.0 0.0574 0.5713 0.0 0.6531 0.8591 0.6014
1.0545 1.3333 3000 1.0331 0.5437 0.6380 0.9253 0.6281 0.6042 0.6614 0.6689 0.9598 0.1969 0.8240 0.9329 0.8189 0.0 0.6535 0.5900 0.9890 0.7623 0.9431 0.4452 0.0576 0.6242 0.7553 0.0473 0.8173 0.9560 0.7380 0.4962 0.5220 0.4592 0.5118 0.8942 0.1780 0.7109 0.8662 0.5534 0.0 0.5445 0.4827 0.9761 0.6458 0.8780 0.3593 0.0575 0.4728 0.6404 0.0470 0.7192 0.8673 0.6224
1.0702 1.7778 4000 1.0152 0.5925 0.7119 0.9278 0.6339 0.8483 0.7095 0.6748 0.9643 0.4595 0.8005 0.9253 0.8096 0.0 0.6926 0.5453 0.9910 0.7992 0.9379 0.5329 0.4324 0.6756 0.7847 0.5913 0.8819 0.9506 0.7321 0.4993 0.5053 0.4767 0.4969 0.8986 0.3391 0.7166 0.8689 0.5999 0.0 0.6029 0.4807 0.9773 0.6585 0.8804 0.3939 0.3874 0.5017 0.6616 0.4461 0.7138 0.8789 0.6421
0.9517 2.2222 5000 0.9929 0.6200 0.7373 0.9309 0.6915 0.7243 0.6735 0.6030 0.9513 0.5424 0.8577 0.9424 0.8352 0.1893 0.7769 0.6458 0.9894 0.8427 0.9335 0.5217 0.5057 0.6906 0.8021 0.7058 0.8375 0.9478 0.7480 0.5345 0.5905 0.5076 0.4934 0.9028 0.4129 0.7423 0.8723 0.6025 0.1827 0.6044 0.5226 0.9785 0.6709 0.8819 0.4060 0.4432 0.5208 0.6637 0.4977 0.7046 0.8846 0.6402
1.0168 2.6667 6000 0.9903 0.6447 0.7756 0.9316 0.6411 0.8493 0.7208 0.6234 0.9524 0.8120 0.8049 0.9446 0.8134 0.6314 0.7481 0.6312 0.9903 0.8097 0.9423 0.4974 0.6191 0.6996 0.7810 0.7204 0.8662 0.9570 0.7842 0.5213 0.5644 0.5073 0.5028 0.8994 0.4049 0.7222 0.8763 0.6491 0.5067 0.6396 0.5282 0.9784 0.6763 0.8856 0.4040 0.4873 0.5286 0.6815 0.5415 0.7612 0.8878 0.6727
1.0717 3.1111 7000 0.9785 0.6508 0.7757 0.9340 0.6746 0.7986 0.6721 0.6354 0.9472 0.6116 0.8959 0.9425 0.8280 0.6989 0.7759 0.6393 0.9887 0.8304 0.9454 0.5240 0.5967 0.7134 0.7888 0.7306 0.8959 0.9525 0.7551 0.5325 0.6073 0.5107 0.5195 0.9065 0.4417 0.7717 0.8754 0.6435 0.5295 0.6266 0.5228 0.9791 0.6817 0.8861 0.4167 0.4969 0.5338 0.6829 0.5395 0.7210 0.8904 0.6522
1.2969 3.5556 8000 0.9726 0.6607 0.7788 0.9353 0.6778 0.7819 0.6816 0.6455 0.9504 0.7169 0.8924 0.9420 0.8285 0.7140 0.7469 0.6249 0.9890 0.8405 0.9465 0.5522 0.6019 0.6983 0.8032 0.6940 0.8498 0.9571 0.7779 0.5486 0.6167 0.5305 0.5219 0.9080 0.4372 0.7636 0.8778 0.6530 0.5394 0.6504 0.5336 0.9795 0.6808 0.8879 0.4286 0.5104 0.5458 0.6881 0.5569 0.7712 0.8914 0.6741
1.066 4.0 9000 0.9686 0.6606 0.7836 0.9352 0.6679 0.8057 0.6835 0.6398 0.9465 0.6595 0.9040 0.9473 0.8201 0.7057 0.7608 0.6587 0.9889 0.8467 0.9406 0.5365 0.6196 0.6992 0.7951 0.7535 0.8633 0.9606 0.8193 0.5390 0.6280 0.5393 0.5135 0.9071 0.4355 0.7590 0.8777 0.6543 0.5289 0.6610 0.5504 0.9798 0.6819 0.8884 0.4267 0.5145 0.5534 0.6897 0.5437 0.7678 0.8903 0.6651
0.9934 4.4444 10000 0.9634 0.6599 0.7918 0.9362 0.6866 0.8041 0.6551 0.7025 0.9550 0.7200 0.8742 0.9367 0.8221 0.6826 0.7694 0.6683 0.9876 0.8475 0.9470 0.5354 0.6706 0.7083 0.8183 0.8001 0.8479 0.9553 0.8165 0.5422 0.6144 0.5272 0.5433 0.9112 0.4443 0.7763 0.8806 0.6577 0.4982 0.6644 0.5512 0.9794 0.6814 0.8875 0.4287 0.5303 0.5516 0.6906 0.4916 0.7697 0.8931 0.6635
0.9396 4.8889 11000 0.9608 0.6706 0.7865 0.9375 0.6659 0.7949 0.6840 0.6375 0.9573 0.6485 0.8755 0.9484 0.8153 0.7668 0.7889 0.6647 0.9907 0.8336 0.9425 0.5406 0.6331 0.7248 0.8096 0.7237 0.8555 0.9560 0.8317 0.5476 0.6242 0.5600 0.5252 0.9132 0.4695 0.7721 0.8799 0.6674 0.5666 0.6676 0.5550 0.9800 0.6793 0.8900 0.4318 0.5307 0.5538 0.7017 0.5603 0.7705 0.8948 0.6825
1.0232 5.3333 12000 0.9602 0.6665 0.7811 0.9374 0.6948 0.7343 0.6613 0.6420 0.9553 0.5946 0.8991 0.9486 0.8225 0.6960 0.7909 0.6412 0.9903 0.8492 0.9400 0.5514 0.6470 0.7395 0.8046 0.7763 0.8375 0.9602 0.7878 0.5510 0.6077 0.5071 0.5136 0.9148 0.4577 0.7800 0.8786 0.6628 0.5361 0.6571 0.5479 0.9802 0.6900 0.8905 0.4368 0.5341 0.5536 0.7050 0.5662 0.7751 0.8941 0.6901
1.003 5.7778 13000 0.9568 0.6665 0.7868 0.9377 0.6587 0.7905 0.7084 0.6866 0.9556 0.5506 0.9020 0.9400 0.8251 0.6929 0.7483 0.6743 0.9903 0.8455 0.9451 0.5720 0.6413 0.7217 0.8021 0.7812 0.9025 0.9549 0.8077 0.5459 0.6315 0.5463 0.5151 0.9130 0.4338 0.7792 0.8823 0.6636 0.5190 0.6567 0.5635 0.9804 0.6903 0.8912 0.4402 0.5333 0.5608 0.7045 0.5575 0.7314 0.8977 0.6934
1.0042 6.2222 14000 0.9524 0.6759 0.7923 0.9393 0.7133 0.7758 0.6648 0.6809 0.9609 0.5916 0.8752 0.9431 0.8173 0.7671 0.7821 0.6872 0.9899 0.8290 0.9472 0.5473 0.6624 0.7405 0.8113 0.7582 0.8978 0.9559 0.8234 0.5641 0.6347 0.5491 0.5441 0.9163 0.4613 0.7830 0.8823 0.6701 0.5536 0.6898 0.5640 0.9804 0.6937 0.8926 0.4372 0.5404 0.5589 0.7084 0.5520 0.7715 0.8982 0.7006
1.1329 6.6667 15000 0.9514 0.6774 0.7927 0.9398 0.6569 0.8159 0.6914 0.7315 0.9660 0.6223 0.8705 0.9411 0.8354 0.7894 0.7848 0.6641 0.9904 0.8079 0.9484 0.5592 0.6137 0.7370 0.8166 0.7257 0.8908 0.9567 0.8171 0.5473 0.6384 0.5535 0.5377 0.9185 0.4755 0.7851 0.8851 0.6648 0.5548 0.6978 0.5690 0.9804 0.6840 0.8920 0.4418 0.5268 0.5655 0.7083 0.5549 0.7825 0.9004 0.7167
0.9527 7.1111 16000 0.9583 0.6728 0.7944 0.9376 0.7232 0.8220 0.6712 0.6710 0.9460 0.5458 0.9175 0.9498 0.8358 0.7740 0.8209 0.6919 0.9886 0.7697 0.9432 0.5861 0.6600 0.7535 0.8073 0.7433 0.8595 0.9565 0.8342 0.5638 0.6379 0.5591 0.5278 0.9112 0.4177 0.7759 0.8823 0.6661 0.5778 0.6754 0.5674 0.9800 0.6777 0.8915 0.4479 0.5367 0.5604 0.7129 0.5705 0.7603 0.8962 0.6784
0.9354 7.5556 17000 0.9510 0.6782 0.7953 0.9394 0.7130 0.8167 0.6822 0.6615 0.9568 0.5684 0.8837 0.9473 0.8334 0.7628 0.8149 0.7023 0.9909 0.8648 0.9403 0.5304 0.7092 0.7378 0.8073 0.7204 0.8791 0.9603 0.8079 0.5636 0.6413 0.5599 0.5420 0.9149 0.4203 0.7894 0.8852 0.6728 0.5804 0.6862 0.5697 0.9806 0.6873 0.8920 0.4373 0.5428 0.5693 0.7165 0.5854 0.7695 0.8976 0.6953
0.908 8.0 18000 0.9500 0.6777 0.8005 0.9399 0.7093 0.7857 0.7006 0.6132 0.9574 0.6719 0.9108 0.9499 0.8358 0.8035 0.8172 0.6634 0.9909 0.8249 0.9405 0.5649 0.6957 0.7319 0.8177 0.7674 0.8684 0.9584 0.8323 0.5724 0.6381 0.5655 0.5112 0.9189 0.4591 0.8012 0.8812 0.6700 0.5631 0.6707 0.5631 0.9807 0.6972 0.8931 0.4485 0.5452 0.5741 0.7061 0.5525 0.7896 0.8983 0.6877
0.8843 8.4444 19000 0.9511 0.6796 0.7993 0.9401 0.7004 0.8178 0.6519 0.7174 0.9572 0.6224 0.9077 0.9474 0.8269 0.7723 0.7965 0.6727 0.9898 0.8237 0.9426 0.5698 0.6640 0.7518 0.8313 0.7532 0.8897 0.9604 0.8164 0.5690 0.6276 0.5562 0.5450 0.9174 0.4548 0.7880 0.8860 0.6724 0.5485 0.6921 0.5652 0.9808 0.6932 0.8931 0.4511 0.5478 0.5682 0.7127 0.5552 0.7931 0.9005 0.7126
0.9566 8.8889 20000 0.9472 0.6787 0.7985 0.9404 0.7049 0.7575 0.6818 0.6768 0.9555 0.6506 0.9006 0.9482 0.8200 0.7445 0.8169 0.7053 0.9907 0.8590 0.9422 0.5622 0.6687 0.7411 0.8172 0.7526 0.8892 0.9563 0.8225 0.5685 0.6161 0.5442 0.5352 0.9182 0.4805 0.7979 0.8858 0.6724 0.5217 0.7002 0.5769 0.9808 0.6892 0.8930 0.4473 0.5409 0.5736 0.7173 0.5570 0.7833 0.9012 0.7092
0.9415 9.3333 21000 0.9548 0.6777 0.7951 0.9399 0.6808 0.8055 0.6928 0.6894 0.9626 0.6218 0.8789 0.9473 0.8325 0.7719 0.7636 0.6931 0.9905 0.8210 0.9433 0.5703 0.6522 0.7388 0.8204 0.7483 0.8854 0.9558 0.8208 0.5609 0.6273 0.5627 0.5270 0.9183 0.4640 0.7927 0.8843 0.6738 0.5507 0.6784 0.5680 0.9808 0.6784 0.8926 0.4504 0.5386 0.5761 0.7179 0.5593 0.7798 0.9016 0.7029
0.9323 9.7778 22000 0.9473 0.6801 0.8004 0.9401 0.6976 0.7806 0.7003 0.6717 0.9568 0.5970 0.9007 0.9481 0.8302 0.7417 0.8203 0.6961 0.9901 0.8677 0.9394 0.5692 0.7008 0.7428 0.8164 0.7686 0.8670 0.9575 0.8475 0.5692 0.6195 0.5507 0.5221 0.9184 0.4674 0.7960 0.8852 0.6797 0.5621 0.6920 0.5766 0.9808 0.6814 0.8924 0.4532 0.5521 0.5755 0.7186 0.5649 0.7876 0.9007 0.6960
0.9317 10.2222 23000 0.9506 0.6815 0.8006 0.9404 0.7121 0.8045 0.7110 0.6755 0.9526 0.6830 0.9059 0.9489 0.8399 0.7169 0.8078 0.7014 0.9907 0.8323 0.9433 0.5671 0.6756 0.7389 0.8177 0.7487 0.8808 0.9624 0.7964 0.5753 0.6195 0.5531 0.5441 0.9163 0.4886 0.7851 0.8864 0.6739 0.5363 0.7008 0.5833 0.9809 0.6951 0.8940 0.4526 0.5529 0.5792 0.7162 0.5601 0.7802 0.9008 0.7007
1.0166 10.6667 24000 0.9497 0.6823 0.8009 0.9409 0.7061 0.8256 0.7003 0.6733 0.9620 0.6408 0.8786 0.9487 0.8402 0.7293 0.8262 0.6825 0.9900 0.8168 0.9442 0.5813 0.6780 0.7523 0.8205 0.7576 0.8812 0.9605 0.8254 0.5732 0.6280 0.5625 0.5400 0.9194 0.4772 0.7939 0.8869 0.6747 0.5375 0.6894 0.5738 0.9810 0.6867 0.8939 0.4566 0.5533 0.5755 0.7220 0.5683 0.7850 0.9019 0.7119
0.9552 11.1111 25000 0.9514 0.6839 0.7956 0.9410 0.6848 0.8055 0.6767 0.6773 0.9627 0.5812 0.8873 0.9497 0.8387 0.7154 0.7963 0.6822 0.9906 0.8297 0.9442 0.5835 0.7141 0.7414 0.8294 0.7613 0.8648 0.9590 0.8237 0.5684 0.6419 0.5621 0.5352 0.9190 0.4497 0.7908 0.8864 0.6778 0.5532 0.6995 0.5788 0.9809 0.6913 0.8940 0.4588 0.5643 0.5798 0.7216 0.5840 0.7834 0.9024 0.7064
0.9968 11.5556 26000 0.9473 0.6823 0.8022 0.9405 0.6980 0.8150 0.6930 0.6878 0.9563 0.6225 0.9037 0.9493 0.8403 0.7341 0.8076 0.6876 0.9899 0.8503 0.9409 0.5806 0.7029 0.7571 0.8294 0.7585 0.8656 0.9608 0.8181 0.5709 0.6372 0.5610 0.5313 0.9178 0.4644 0.7953 0.8871 0.6764 0.5590 0.6897 0.5793 0.9810 0.6847 0.8930 0.4576 0.5509 0.5765 0.7208 0.5659 0.7791 0.9003 0.7139
0.9555 12.0 27000 0.9485 0.6820 0.7971 0.9410 0.6763 0.8329 0.6877 0.6743 0.9597 0.5537 0.8978 0.9477 0.8351 0.7162 0.7749 0.7018 0.9903 0.8405 0.9465 0.5790 0.6895 0.7582 0.8251 0.7846 0.8723 0.9619 0.8265 0.5656 0.6363 0.5703 0.5333 0.9185 0.4344 0.7931 0.8880 0.6813 0.5455 0.6994 0.5813 0.9810 0.6898 0.8941 0.4572 0.5481 0.5793 0.7227 0.5605 0.7893 0.9011 0.7158
0.9325 12.4444 28000 0.9490 0.6829 0.8029 0.9412 0.6928 0.7981 0.7084 0.6846 0.9600 0.6005 0.8961 0.9461 0.8434 0.7252 0.8082 0.6989 0.9895 0.8267 0.9466 0.5831 0.7146 0.7602 0.8321 0.7699 0.8824 0.9595 0.8409 0.5665 0.6315 0.5542 0.5330 0.9202 0.4673 0.7991 0.8880 0.6772 0.5431 0.7031 0.5830 0.9808 0.6882 0.8944 0.4585 0.5421 0.5785 0.7214 0.5722 0.7859 0.9029 0.7148
0.9039 12.8889 29000 0.9449 0.6862 0.7980 0.9417 0.6883 0.8044 0.6908 0.6811 0.9607 0.5807 0.8982 0.9472 0.8457 0.7476 0.7988 0.7018 0.9902 0.8109 0.9498 0.5777 0.6796 0.7492 0.8243 0.7585 0.8824 0.9601 0.8252 0.5666 0.6462 0.5669 0.5394 0.9201 0.4516 0.7983 0.8889 0.6767 0.5723 0.7040 0.5827 0.9811 0.6910 0.8946 0.4583 0.5528 0.5807 0.7217 0.5810 0.7921 0.9035 0.7126
0.936 13.3333 30000 0.9458 0.6848 0.8025 0.9414 0.7056 0.7957 0.7069 0.6933 0.9611 0.6014 0.8949 0.9441 0.8329 0.7333 0.8139 0.6904 0.9892 0.8341 0.9471 0.5854 0.7129 0.7506 0.8271 0.7628 0.8837 0.9617 0.8291 0.5683 0.6342 0.5463 0.5447 0.9202 0.4538 0.7957 0.8889 0.6829 0.5634 0.7052 0.5821 0.9809 0.6864 0.8944 0.4613 0.5455 0.5809 0.7217 0.5705 0.7921 0.9039 0.7260
0.9636 13.7778 31000 0.9470 0.6856 0.8003 0.9416 0.6972 0.8154 0.6967 0.6890 0.9617 0.6171 0.8940 0.9500 0.8438 0.7202 0.7881 0.7000 0.9909 0.8198 0.9431 0.5814 0.6997 0.7480 0.8320 0.7590 0.8715 0.9590 0.8301 0.5733 0.6329 0.5570 0.5440 0.9204 0.4667 0.7962 0.8880 0.6784 0.5502 0.7071 0.5841 0.9811 0.6878 0.8946 0.4602 0.5583 0.5827 0.7208 0.5780 0.7890 0.9039 0.7138
0.8986 14.2222 32000 0.9472 0.6864 0.8013 0.9417 0.6857 0.7904 0.6909 0.6910 0.9619 0.6165 0.8941 0.9449 0.8406 0.7531 0.8035 0.7000 0.9899 0.8171 0.9487 0.5884 0.6967 0.7541 0.8281 0.7664 0.8738 0.9624 0.8329 0.5684 0.6394 0.5559 0.5415 0.9206 0.4706 0.7962 0.8889 0.6812 0.5703 0.7083 0.5841 0.9811 0.6856 0.8946 0.4616 0.5548 0.5814 0.7220 0.5702 0.7908 0.9032 0.7170
0.9031 14.6667 33000 0.9465 0.6876 0.8034 0.9418 0.6800 0.8164 0.6949 0.6949 0.9600 0.6083 0.8963 0.9474 0.8455 0.7457 0.8079 0.7057 0.9903 0.8351 0.9468 0.5784 0.6875 0.7517 0.8324 0.7600 0.8898 0.9598 0.8427 0.5668 0.6378 0.5595 0.5403 0.9205 0.4618 0.7968 0.8891 0.6797 0.5718 0.7125 0.5860 0.9811 0.6872 0.8949 0.4599 0.5531 0.5835 0.7231 0.5797 0.7946 0.9055 0.7304

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.7.1+cu118
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
9
Safetensors
Model size
47.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Vrjb/SegFormer_b3_mappillary_

Finetuned
(5)
this model