File size: 11,767 Bytes
e2ef423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
BitTransformerLM CLI Argument Standards

Unified command-line interface standards for all BitTransformerLM scripts.
This module provides standardized argument parsers and naming conventions.
"""

import argparse
from typing import Optional, Callable


class BitTransformerCLI:
    """Standardized CLI argument parser for BitTransformerLM."""
    
    @staticmethod
    def add_model_args(parser: argparse.ArgumentParser) -> None:
        """Add standard model configuration arguments."""
        model_group = parser.add_argument_group('Model Configuration')
        model_group.add_argument('--model-size', choices=['tiny', 'small', 'medium', 'large'], 
                                default='small', help='Model size preset')
        model_group.add_argument('--d-model', type=int, default=128, 
                                help='Model dimension')
        model_group.add_argument('--num-heads', type=int, default=8, 
                                help='Number of attention heads')
        model_group.add_argument('--num-layers', type=int, default=6, 
                                help='Number of transformer layers')
        model_group.add_argument('--dropout', type=float, default=0.1, 
                                help='Dropout rate')
        model_group.add_argument('--max-seq-len', type=int, default=512, 
                                help='Maximum sequence length')
    
    @staticmethod
    def add_training_args(parser: argparse.ArgumentParser) -> None:
        """Add standard training arguments."""
        train_group = parser.add_argument_group('Training Configuration')
        train_group.add_argument('--epochs', type=int, default=10, 
                                help='Number of training epochs')
        train_group.add_argument('--batch-size', type=int, default=16, 
                                help='Training batch size')
        train_group.add_argument('--learning-rate', type=float, default=1e-3, 
                                help='Learning rate')
        train_group.add_argument('--weight-decay', type=float, default=0.01, 
                                help='Weight decay')
        train_group.add_argument('--grad-clip', type=float, default=1.0, 
                                help='Gradient clipping threshold')
        train_group.add_argument('--warmup-steps', type=int, default=100, 
                                help='Number of warmup steps')
        
    @staticmethod
    def add_dataset_args(parser: argparse.ArgumentParser) -> None:
        """Add standard dataset arguments."""
        data_group = parser.add_argument_group('Dataset Configuration')
        data_group.add_argument('--dataset-name', type=str, default='synthetic', 
                               help='Dataset name or path')
        data_group.add_argument('--dataset-size', type=int, default=10000, 
                               help='Dataset size (number of samples)')
        data_group.add_argument('--seq-length', type=int, default=64, 
                               help='Sequence length for training')
        data_group.add_argument('--validation-split', type=float, default=0.1, 
                               help='Validation split ratio')
        
    @staticmethod
    def add_safety_args(parser: argparse.ArgumentParser) -> None:
        """Add safety and telemetry arguments."""
        safety_group = parser.add_argument_group('Safety & Telemetry')
        safety_group.add_argument('--enable-safety-gates', action='store_true', 
                                 help='Enable safety gates during inference')
        safety_group.add_argument('--min-negentropy', type=float, default=0.1, 
                                 help='Minimum negentropy threshold')
        safety_group.add_argument('--max-complexity', type=float, default=0.9, 
                                 help='Maximum LZ complexity threshold')
        safety_group.add_argument('--min-symbiosis', type=float, default=0.3, 
                                 help='Minimum symbiosis score threshold')
        safety_group.add_argument('--telemetry-logging', action='store_true', 
                                 help='Enable detailed telemetry logging')
                                 
    @staticmethod
    def add_optimization_args(parser: argparse.ArgumentParser) -> None:
        """Add optimization and performance arguments."""
        opt_group = parser.add_argument_group('Optimization & Performance')
        opt_group.add_argument('--use-amp', action='store_true', 
                              help='Use automatic mixed precision')
        opt_group.add_argument('--gradient-checkpointing', action='store_true', 
                              help='Use gradient checkpointing')
        opt_group.add_argument('--compile-model', action='store_true', 
                              help='Use torch.compile for optimization')
        opt_group.add_argument('--chunk-size', type=int, default=None, 
                              help='Chunk size for chunked attention')
        opt_group.add_argument('--num-workers', type=int, default=4, 
                              help='Number of data loader workers')
                              
    @staticmethod
    def add_distributed_args(parser: argparse.ArgumentParser) -> None:
        """Add distributed training arguments."""
        dist_group = parser.add_argument_group('Distributed Training')
        dist_group.add_argument('--distributed', action='store_true', 
                               help='Enable distributed training')
        dist_group.add_argument('--world-size', type=int, default=1, 
                               help='Number of distributed processes')
        dist_group.add_argument('--rank', type=int, default=0, 
                               help='Process rank for distributed training')
        dist_group.add_argument('--backend', choices=['nccl', 'gloo'], default='nccl', 
                               help='Distributed backend')
                               
    @staticmethod
    def add_io_args(parser: argparse.ArgumentParser) -> None:
        """Add input/output arguments."""
        io_group = parser.add_argument_group('Input/Output')
        io_group.add_argument('--input-path', type=str, 
                             help='Input file or directory path')
        io_group.add_argument('--output-path', type=str, default='./output', 
                             help='Output directory path')
        io_group.add_argument('--weights-path', type=str, default='./weights/model.pt', 
                             help='Model weights file path')
        io_group.add_argument('--checkpoint-dir', type=str, default='./checkpoints', 
                             help='Checkpoint directory path')
        io_group.add_argument('--log-level', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR'], 
                             default='INFO', help='Logging level')
                             
    @staticmethod
    def add_huggingface_args(parser: argparse.ArgumentParser) -> None:
        """Add HuggingFace integration arguments."""
        hf_group = parser.add_argument_group('HuggingFace Integration')
        hf_group.add_argument('--hf-repo', type=str, 
                             help='HuggingFace repository ID')
        hf_group.add_argument('--hf-token', type=str, 
                             help='HuggingFace access token')
        hf_group.add_argument('--private-repo', action='store_true', 
                             help='Create private HuggingFace repository')
        hf_group.add_argument('--auto-upload', action='store_true', 
                             help='Automatically upload to HuggingFace after training')
                             
    @staticmethod
    def add_diffusion_args(parser: argparse.ArgumentParser) -> None:
        """Add diffusion mode arguments."""
        diff_group = parser.add_argument_group('Diffusion Mode')
        diff_group.add_argument('--diffusion-mode', action='store_true', 
                               help='Enable diffusion training mode')
        diff_group.add_argument('--diffusion-steps', type=int, default=8, 
                               help='Number of diffusion steps')
        diff_group.add_argument('--noise-schedule', choices=['linear', 'cosine', 'exponential'], 
                               default='linear', help='Noise schedule type')
        diff_group.add_argument('--diffusion-curriculum', action='store_true', 
                               help='Use curriculum learning for diffusion')
                               
    @classmethod
    def create_standard_parser(cls, 
                              description: str, 
                              include_groups: Optional[list] = None) -> argparse.ArgumentParser:
        """Create a standardized argument parser with specified groups.
        
        Args:
            description: Parser description
            include_groups: List of group names to include. If None, includes all.
                          Options: ['model', 'training', 'dataset', 'safety', 'optimization', 
                                   'distributed', 'io', 'huggingface', 'diffusion']
        """
        parser = argparse.ArgumentParser(
            description=description,
            formatter_class=argparse.ArgumentDefaultsHelpFormatter
        )
        
        # Default groups to include if none specified
        if include_groups is None:
            include_groups = ['model', 'training', 'dataset', 'safety', 'io']
        
        # Add requested argument groups
        group_methods = {
            'model': cls.add_model_args,
            'training': cls.add_training_args,
            'dataset': cls.add_dataset_args,
            'safety': cls.add_safety_args,
            'optimization': cls.add_optimization_args,
            'distributed': cls.add_distributed_args,
            'io': cls.add_io_args,
            'huggingface': cls.add_huggingface_args,
            'diffusion': cls.add_diffusion_args,
        }
        
        for group_name in include_groups:
            if group_name in group_methods:
                group_methods[group_name](parser)
        
        # Add common flags
        parser.add_argument('--verbose', '-v', action='store_true', 
                           help='Enable verbose output')
        parser.add_argument('--debug', action='store_true', 
                           help='Enable debug mode')
        parser.add_argument('--seed', type=int, default=42, 
                           help='Random seed for reproducibility')
        
        return parser


# Pre-configured parsers for common use cases
def create_training_parser() -> argparse.ArgumentParser:
    """Create parser for training scripts."""
    return BitTransformerCLI.create_standard_parser(
        "BitTransformerLM Training Script",
        ['model', 'training', 'dataset', 'safety', 'optimization', 'distributed', 'io', 'huggingface']
    )

def create_inference_parser() -> argparse.ArgumentParser:
    """Create parser for inference scripts."""
    return BitTransformerCLI.create_standard_parser(
        "BitTransformerLM Inference Script",
        ['model', 'safety', 'io', 'diffusion']
    )

def create_evaluation_parser() -> argparse.ArgumentParser:
    """Create parser for evaluation scripts."""
    return BitTransformerCLI.create_standard_parser(
        "BitTransformerLM Evaluation Script",
        ['model', 'dataset', 'safety', 'io']
    )

def create_workflow_parser() -> argparse.ArgumentParser:
    """Create parser for workflow/pipeline scripts."""
    return BitTransformerCLI.create_standard_parser(
        "BitTransformerLM Workflow Script",
        ['model', 'training', 'dataset', 'safety', 'optimization', 'io', 'huggingface', 'diffusion']
    )