🚀 Final optimization: Update cli_standards.py with production-ready enhancements
Browse files- bit_transformer/cli_standards.py +222 -0
bit_transformer/cli_standards.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
BitTransformerLM CLI Argument Standards
|
3 |
+
|
4 |
+
Unified command-line interface standards for all BitTransformerLM scripts.
|
5 |
+
This module provides standardized argument parsers and naming conventions.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import argparse
|
9 |
+
from typing import Optional, Callable
|
10 |
+
|
11 |
+
|
12 |
+
class BitTransformerCLI:
|
13 |
+
"""Standardized CLI argument parser for BitTransformerLM."""
|
14 |
+
|
15 |
+
@staticmethod
|
16 |
+
def add_model_args(parser: argparse.ArgumentParser) -> None:
|
17 |
+
"""Add standard model configuration arguments."""
|
18 |
+
model_group = parser.add_argument_group('Model Configuration')
|
19 |
+
model_group.add_argument('--model-size', choices=['tiny', 'small', 'medium', 'large'],
|
20 |
+
default='small', help='Model size preset')
|
21 |
+
model_group.add_argument('--d-model', type=int, default=128,
|
22 |
+
help='Model dimension')
|
23 |
+
model_group.add_argument('--num-heads', type=int, default=8,
|
24 |
+
help='Number of attention heads')
|
25 |
+
model_group.add_argument('--num-layers', type=int, default=6,
|
26 |
+
help='Number of transformer layers')
|
27 |
+
model_group.add_argument('--dropout', type=float, default=0.1,
|
28 |
+
help='Dropout rate')
|
29 |
+
model_group.add_argument('--max-seq-len', type=int, default=512,
|
30 |
+
help='Maximum sequence length')
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def add_training_args(parser: argparse.ArgumentParser) -> None:
|
34 |
+
"""Add standard training arguments."""
|
35 |
+
train_group = parser.add_argument_group('Training Configuration')
|
36 |
+
train_group.add_argument('--epochs', type=int, default=10,
|
37 |
+
help='Number of training epochs')
|
38 |
+
train_group.add_argument('--batch-size', type=int, default=16,
|
39 |
+
help='Training batch size')
|
40 |
+
train_group.add_argument('--learning-rate', type=float, default=1e-3,
|
41 |
+
help='Learning rate')
|
42 |
+
train_group.add_argument('--weight-decay', type=float, default=0.01,
|
43 |
+
help='Weight decay')
|
44 |
+
train_group.add_argument('--grad-clip', type=float, default=1.0,
|
45 |
+
help='Gradient clipping threshold')
|
46 |
+
train_group.add_argument('--warmup-steps', type=int, default=100,
|
47 |
+
help='Number of warmup steps')
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def add_dataset_args(parser: argparse.ArgumentParser) -> None:
|
51 |
+
"""Add standard dataset arguments."""
|
52 |
+
data_group = parser.add_argument_group('Dataset Configuration')
|
53 |
+
data_group.add_argument('--dataset-name', type=str, default='synthetic',
|
54 |
+
help='Dataset name or path')
|
55 |
+
data_group.add_argument('--dataset-size', type=int, default=10000,
|
56 |
+
help='Dataset size (number of samples)')
|
57 |
+
data_group.add_argument('--seq-length', type=int, default=64,
|
58 |
+
help='Sequence length for training')
|
59 |
+
data_group.add_argument('--validation-split', type=float, default=0.1,
|
60 |
+
help='Validation split ratio')
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def add_safety_args(parser: argparse.ArgumentParser) -> None:
|
64 |
+
"""Add safety and telemetry arguments."""
|
65 |
+
safety_group = parser.add_argument_group('Safety & Telemetry')
|
66 |
+
safety_group.add_argument('--enable-safety-gates', action='store_true',
|
67 |
+
help='Enable safety gates during inference')
|
68 |
+
safety_group.add_argument('--min-negentropy', type=float, default=0.1,
|
69 |
+
help='Minimum negentropy threshold')
|
70 |
+
safety_group.add_argument('--max-complexity', type=float, default=0.9,
|
71 |
+
help='Maximum LZ complexity threshold')
|
72 |
+
safety_group.add_argument('--min-symbiosis', type=float, default=0.3,
|
73 |
+
help='Minimum symbiosis score threshold')
|
74 |
+
safety_group.add_argument('--telemetry-logging', action='store_true',
|
75 |
+
help='Enable detailed telemetry logging')
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def add_optimization_args(parser: argparse.ArgumentParser) -> None:
|
79 |
+
"""Add optimization and performance arguments."""
|
80 |
+
opt_group = parser.add_argument_group('Optimization & Performance')
|
81 |
+
opt_group.add_argument('--use-amp', action='store_true',
|
82 |
+
help='Use automatic mixed precision')
|
83 |
+
opt_group.add_argument('--gradient-checkpointing', action='store_true',
|
84 |
+
help='Use gradient checkpointing')
|
85 |
+
opt_group.add_argument('--compile-model', action='store_true',
|
86 |
+
help='Use torch.compile for optimization')
|
87 |
+
opt_group.add_argument('--chunk-size', type=int, default=None,
|
88 |
+
help='Chunk size for chunked attention')
|
89 |
+
opt_group.add_argument('--num-workers', type=int, default=4,
|
90 |
+
help='Number of data loader workers')
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def add_distributed_args(parser: argparse.ArgumentParser) -> None:
|
94 |
+
"""Add distributed training arguments."""
|
95 |
+
dist_group = parser.add_argument_group('Distributed Training')
|
96 |
+
dist_group.add_argument('--distributed', action='store_true',
|
97 |
+
help='Enable distributed training')
|
98 |
+
dist_group.add_argument('--world-size', type=int, default=1,
|
99 |
+
help='Number of distributed processes')
|
100 |
+
dist_group.add_argument('--rank', type=int, default=0,
|
101 |
+
help='Process rank for distributed training')
|
102 |
+
dist_group.add_argument('--backend', choices=['nccl', 'gloo'], default='nccl',
|
103 |
+
help='Distributed backend')
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def add_io_args(parser: argparse.ArgumentParser) -> None:
|
107 |
+
"""Add input/output arguments."""
|
108 |
+
io_group = parser.add_argument_group('Input/Output')
|
109 |
+
io_group.add_argument('--input-path', type=str,
|
110 |
+
help='Input file or directory path')
|
111 |
+
io_group.add_argument('--output-path', type=str, default='./output',
|
112 |
+
help='Output directory path')
|
113 |
+
io_group.add_argument('--weights-path', type=str, default='./weights/model.pt',
|
114 |
+
help='Model weights file path')
|
115 |
+
io_group.add_argument('--checkpoint-dir', type=str, default='./checkpoints',
|
116 |
+
help='Checkpoint directory path')
|
117 |
+
io_group.add_argument('--log-level', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR'],
|
118 |
+
default='INFO', help='Logging level')
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def add_huggingface_args(parser: argparse.ArgumentParser) -> None:
|
122 |
+
"""Add HuggingFace integration arguments."""
|
123 |
+
hf_group = parser.add_argument_group('HuggingFace Integration')
|
124 |
+
hf_group.add_argument('--hf-repo', type=str,
|
125 |
+
help='HuggingFace repository ID')
|
126 |
+
hf_group.add_argument('--hf-token', type=str,
|
127 |
+
help='HuggingFace access token')
|
128 |
+
hf_group.add_argument('--private-repo', action='store_true',
|
129 |
+
help='Create private HuggingFace repository')
|
130 |
+
hf_group.add_argument('--auto-upload', action='store_true',
|
131 |
+
help='Automatically upload to HuggingFace after training')
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def add_diffusion_args(parser: argparse.ArgumentParser) -> None:
|
135 |
+
"""Add diffusion mode arguments."""
|
136 |
+
diff_group = parser.add_argument_group('Diffusion Mode')
|
137 |
+
diff_group.add_argument('--diffusion-mode', action='store_true',
|
138 |
+
help='Enable diffusion training mode')
|
139 |
+
diff_group.add_argument('--diffusion-steps', type=int, default=8,
|
140 |
+
help='Number of diffusion steps')
|
141 |
+
diff_group.add_argument('--noise-schedule', choices=['linear', 'cosine', 'exponential'],
|
142 |
+
default='linear', help='Noise schedule type')
|
143 |
+
diff_group.add_argument('--diffusion-curriculum', action='store_true',
|
144 |
+
help='Use curriculum learning for diffusion')
|
145 |
+
|
146 |
+
@classmethod
|
147 |
+
def create_standard_parser(cls,
|
148 |
+
description: str,
|
149 |
+
include_groups: Optional[list] = None) -> argparse.ArgumentParser:
|
150 |
+
"""Create a standardized argument parser with specified groups.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
description: Parser description
|
154 |
+
include_groups: List of group names to include. If None, includes all.
|
155 |
+
Options: ['model', 'training', 'dataset', 'safety', 'optimization',
|
156 |
+
'distributed', 'io', 'huggingface', 'diffusion']
|
157 |
+
"""
|
158 |
+
parser = argparse.ArgumentParser(
|
159 |
+
description=description,
|
160 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
161 |
+
)
|
162 |
+
|
163 |
+
# Default groups to include if none specified
|
164 |
+
if include_groups is None:
|
165 |
+
include_groups = ['model', 'training', 'dataset', 'safety', 'io']
|
166 |
+
|
167 |
+
# Add requested argument groups
|
168 |
+
group_methods = {
|
169 |
+
'model': cls.add_model_args,
|
170 |
+
'training': cls.add_training_args,
|
171 |
+
'dataset': cls.add_dataset_args,
|
172 |
+
'safety': cls.add_safety_args,
|
173 |
+
'optimization': cls.add_optimization_args,
|
174 |
+
'distributed': cls.add_distributed_args,
|
175 |
+
'io': cls.add_io_args,
|
176 |
+
'huggingface': cls.add_huggingface_args,
|
177 |
+
'diffusion': cls.add_diffusion_args,
|
178 |
+
}
|
179 |
+
|
180 |
+
for group_name in include_groups:
|
181 |
+
if group_name in group_methods:
|
182 |
+
group_methods[group_name](parser)
|
183 |
+
|
184 |
+
# Add common flags
|
185 |
+
parser.add_argument('--verbose', '-v', action='store_true',
|
186 |
+
help='Enable verbose output')
|
187 |
+
parser.add_argument('--debug', action='store_true',
|
188 |
+
help='Enable debug mode')
|
189 |
+
parser.add_argument('--seed', type=int, default=42,
|
190 |
+
help='Random seed for reproducibility')
|
191 |
+
|
192 |
+
return parser
|
193 |
+
|
194 |
+
|
195 |
+
# Pre-configured parsers for common use cases
|
196 |
+
def create_training_parser() -> argparse.ArgumentParser:
|
197 |
+
"""Create parser for training scripts."""
|
198 |
+
return BitTransformerCLI.create_standard_parser(
|
199 |
+
"BitTransformerLM Training Script",
|
200 |
+
['model', 'training', 'dataset', 'safety', 'optimization', 'distributed', 'io', 'huggingface']
|
201 |
+
)
|
202 |
+
|
203 |
+
def create_inference_parser() -> argparse.ArgumentParser:
|
204 |
+
"""Create parser for inference scripts."""
|
205 |
+
return BitTransformerCLI.create_standard_parser(
|
206 |
+
"BitTransformerLM Inference Script",
|
207 |
+
['model', 'safety', 'io', 'diffusion']
|
208 |
+
)
|
209 |
+
|
210 |
+
def create_evaluation_parser() -> argparse.ArgumentParser:
|
211 |
+
"""Create parser for evaluation scripts."""
|
212 |
+
return BitTransformerCLI.create_standard_parser(
|
213 |
+
"BitTransformerLM Evaluation Script",
|
214 |
+
['model', 'dataset', 'safety', 'io']
|
215 |
+
)
|
216 |
+
|
217 |
+
def create_workflow_parser() -> argparse.ArgumentParser:
|
218 |
+
"""Create parser for workflow/pipeline scripts."""
|
219 |
+
return BitTransformerCLI.create_standard_parser(
|
220 |
+
"BitTransformerLM Workflow Script",
|
221 |
+
['model', 'training', 'dataset', 'safety', 'optimization', 'io', 'huggingface', 'diffusion']
|
222 |
+
)
|