File size: 36,055 Bytes
cf1ded2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
import math
import contextlib
import logging
from typing import Dict, List, Tuple, Optional
import torch
import torch.distributed as dist
import sys
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from .torch_utils import cpu_autocast
from .optimization import configure_optimizer
from .compression import decompress_bits
from .parity import enforce_parity
_mask_cache: Dict[Tuple[int, torch.device], torch.Tensor] = {}
_attention_cache: Dict[str, torch.Tensor] = {} # For caching attention patterns
_MAX_CACHE_SIZE = 50 # Limit cache growth
def clear_cache():
"""Clear memory caches to prevent OOM in long sequences."""
global _mask_cache, _attention_cache
_mask_cache.clear()
_attention_cache.clear()
def get_tri_mask(seq_len: int, device: torch.device) -> torch.Tensor:
"""Return or create a cached upper-triangular mask with memory management."""
key = (seq_len, device)
# Clear cache if it gets too large
if len(_mask_cache) > _MAX_CACHE_SIZE:
clear_cache()
if key not in _mask_cache:
_mask_cache[key] = torch.triu(
torch.ones(seq_len, seq_len, device=device, dtype=torch.bool), 1
)
return _mask_cache[key]
try: # torch.compile may not work on all Python versions
if torch.__version__ and tuple(map(int, torch.__version__.split(".")[:2])) >= (2, 0) and sys.version_info < (3, 11):
compile_fn = torch.compile
else:
raise RuntimeError
except Exception: # pragma: no cover - handle missing torch or unsupported version
def compile_fn(fn=None, **kwargs):
if fn is None:
return lambda f: f
return fn
class PositionalEncoding(nn.Module):
"""Sinusoidal positional encoding."""
def __init__(self, d_model: int, max_len: int = 1024) -> None:
super().__init__()
pe = torch.zeros(max_len, d_model)
pos = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
inv = torch.exp(
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(pos * inv)
pe[:, 1::2] = torch.cos(pos * inv)
self.register_buffer("pe", pe.unsqueeze(1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Add positional encoding to input tensor."""
return x + self.pe[: x.size(0)]
class LoggingTransformerEncoderLayer(nn.Module):
"""Transformer encoder layer that exposes attention weights.
It optionally performs chunked attention with a fixed window size.
"""
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 512,
dropout: float = 0.1,
chunk_size: Optional[int] = None,
overlap: int = 0,
full_attn_logging: Optional[bool] = None,
) -> None:
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
self.chunk_size = chunk_size
self.overlap = overlap
if full_attn_logging is None:
full_attn_logging = False if chunk_size is not None else True
self.full_attn_logging = full_attn_logging
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = F.relu
def _chunked_attn(
self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Perform memory-efficient chunked self attention with overlap."""
T, B, D = src.shape
# Early return for small sequences
if T <= 128 or self.chunk_size is None or self.chunk_size >= T:
return self._full_attn(src, attn_mask)
src_b = src.transpose(0, 1) # [B, T, D]
C = self.chunk_size
O = self.overlap
n_chunks = (T + C - 1) // C
pad_len = n_chunks * C - T
# Process chunks with gradient checkpointing for memory efficiency
outputs = []
weights_list = []
# Use memory-efficient processing
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
for chunk_idx in range(n_chunks):
start_idx = chunk_idx * C
end_idx = min(start_idx + C + 2 * O, T + O)
# Extract chunk with overlap
chunk_start = max(0, start_idx - O)
chunk_end = min(T, end_idx)
chunk = src_b[:, chunk_start:chunk_end]
# Pad if necessary
if chunk.size(1) < C + 2 * O:
pad_size = C + 2 * O - chunk.size(1)
chunk = F.pad(chunk, (0, 0, 0, pad_size))
chunk_len = chunk.size(1)
mask = get_tri_mask(chunk_len, src.device) if attn_mask is not None else None
# Apply attention to chunk
out, weights = self.self_attn(
chunk, chunk, chunk,
attn_mask=mask,
need_weights=self.full_attn_logging,
average_attn_weights=False,
)
# Extract the core part (remove overlap)
core_start = O if chunk_idx > 0 else 0
core_end = core_start + min(C, T - start_idx)
outputs.append(out[:, core_start:core_end])
if self.full_attn_logging and weights is not None:
weights_list.append(weights[:, :, core_start:core_end])
# Clear intermediate tensors to save memory
del out, weights, chunk
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Concatenate outputs
seq = torch.cat(outputs, dim=1)
# Handle attention weights
if self.full_attn_logging and weights_list:
# Use sparse representation for large sequences
if T > 1024:
attn_out = torch.empty(0, device=src.device) # Skip full attention for very long sequences
else:
attn_out = torch.cat(weights_list, dim=2)
else:
attn_out = torch.empty(0, device=src.device)
return seq.transpose(0, 1), attn_out
def _full_attn(self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""Standard full attention for smaller sequences."""
qkv = src.transpose(0, 1)
attn_output, attn_weights = self.self_attn(
qkv, qkv, qkv,
attn_mask=attn_mask,
need_weights=True,
average_attn_weights=False,
)
return attn_output.transpose(0, 1), attn_weights
def forward(
self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Return output and attention map."""
if self.chunk_size is not None:
attn_output, attn_weights = self._chunked_attn(src, attn_mask)
else:
qkv = src.transpose(0, 1)
attn_output, attn_weights = self.self_attn(
qkv,
qkv,
qkv,
attn_mask=attn_mask,
need_weights=True,
average_attn_weights=False,
)
attn_output = attn_output.transpose(0, 1)
src = src + self.dropout1(attn_output)
src = self.norm1(src)
out = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(out)
src = self.norm2(src)
return src, attn_weights.detach()
class ReversibleLoggingTransformerEncoderLayer(nn.Module):
"""Reversible transformer encoder layer with checkpointing."""
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 512,
dropout: float = 0.1,
chunk_size: Optional[int] = None,
overlap: int = 0,
full_attn_logging: Optional[bool] = None,
) -> None:
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
self.chunk_size = chunk_size
self.overlap = overlap
if full_attn_logging is None:
full_attn_logging = False if chunk_size is not None else True
self.full_attn_logging = full_attn_logging
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = F.relu
@compile_fn
def _sa_block(
self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.chunk_size is not None:
T, B, D = x.shape
x_b = x.transpose(0, 1)
C = self.chunk_size or T
O = self.overlap
n_chunks = (T + C - 1) // C
pad_len = n_chunks * C - T
src_pad = F.pad(x_b, (0, 0, O, pad_len + O))
chunk_len = C + 2 * O
chunks = src_pad.unfold(1, chunk_len, C)
mask = get_tri_mask(chunk_len, x.device) if attn_mask is not None else None
out, weights = self.self_attn(
chunks.reshape(B * n_chunks, chunk_len, D),
chunks.reshape(B * n_chunks, chunk_len, D),
chunks.reshape(B * n_chunks, chunk_len, D),
attn_mask=mask,
need_weights=True,
average_attn_weights=False,
)
out = out.view(B, n_chunks, chunk_len, D)[:, :, O : O + C]
weights = weights.view(B, n_chunks, self.self_attn.num_heads, chunk_len, chunk_len)[
:, :, :, O : O + C
]
seq = out.reshape(B, n_chunks * C, D)[:, :T]
if self.full_attn_logging and C < T:
full_attn = torch.zeros(
B, self.self_attn.num_heads, n_chunks * C, n_chunks * C, device=x.device
)
for idx in range(n_chunks):
s = idx * C
start = max(s - O, 0)
end = min(s + C, n_chunks * C)
src_start = O - (s - start)
src_end = src_start + (end - start)
full_attn[:, :, s : s + C, start:end] = weights[
:, idx, :, src_start:src_end
]
full_attn = full_attn[:, :, :T, :T]
weights = full_attn.detach()
else:
weights = torch.empty(0, device=x.device)
attn_out = seq.transpose(0, 1)
else:
qkv = x.transpose(0, 1)
attn_out, weights = self.self_attn(
qkv,
qkv,
qkv,
attn_mask=attn_mask,
need_weights=True,
average_attn_weights=False,
)
attn_out = attn_out.transpose(0, 1)
x = self.norm1(x + self.dropout1(attn_out))
return x, weights.detach()
@compile_fn
def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
out = self.linear2(self.dropout(self.activation(self.linear1(x))))
x = self.norm2(x + self.dropout2(out))
return x
def forward(
self,
x1: torch.Tensor,
x2: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
y1, weights = self._sa_block(x2, attn_mask)
y1 = x1 + y1
y2 = x2 + self._ff_block(y1)
return y1, y2, weights
class BitTransformerLM(nn.Module):
"""Transformer language model that operates on raw bits (0/1) with telemetry."""
def __init__(
self,
d_model: int = 128,
nhead: int = 8,
num_layers: int = 4,
dim_feedforward: int = 512,
max_seq_len: int = 1024,
lambda_K: float = 1.0,
lambda_C: float = 1.0,
lambda_S: float = 1.0,
reversible: bool = False,
use_checkpoint: bool = True,
use_autocast: bool = False,
use_act: bool = False,
act_threshold: float = 0.9,
chunk_size: Optional[int] = None,
overlap: int = 0,
full_attn_logging: Optional[bool] = None,
) -> None:
"""Create a BitTransformer language model.
Args:
full_attn_logging: When ``False`` and ``chunk_size`` is
smaller than the sequence length, the model skips
reconstructing the full ``T×T`` attention matrices for
telemetry to reduce memory use.
"""
super().__init__()
self.d_model = d_model
self.num_layers = num_layers
self.lambda_K = lambda_K
self.lambda_C = lambda_C
self.lambda_S = lambda_S
self.reversible = reversible
self.use_checkpoint = use_checkpoint
self.use_autocast = use_autocast
self.use_act = use_act
self.act_threshold = act_threshold
self.chunk_size = chunk_size
self.overlap = overlap
if full_attn_logging is None:
full_attn_logging = False if chunk_size is not None else True
self.full_attn_logging = full_attn_logging
# Bit embedding: two possible input values
self.embedding = nn.Embedding(2, d_model)
self.pos_enc = PositionalEncoding(d_model, max_len=max_seq_len)
layer_cls = (
ReversibleLoggingTransformerEncoderLayer
if reversible
else LoggingTransformerEncoderLayer
)
self.layers = nn.ModuleList(
[
layer_cls(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
chunk_size=chunk_size,
overlap=overlap,
full_attn_logging=full_attn_logging,
)
for _ in range(num_layers)
]
)
if self.use_act:
self.halt_projs = nn.ModuleList(
[nn.Linear(d_model, 1) for _ in range(num_layers)]
)
self.out_head = nn.Linear(d_model, 2) # output logits for bit=0 or bit=1
def expand_positional_encoding(self, new_len: int) -> None:
"""Expand positional encoding to at least ``new_len``."""
cur_len = self.pos_enc.pe.size(0)
if new_len <= cur_len:
return
device = self.pos_enc.pe.device
d_model = self.d_model
pe = torch.zeros(new_len, d_model, device=device)
pe[:cur_len] = self.pos_enc.pe.squeeze(1)
pos = torch.arange(cur_len, new_len, dtype=torch.float32, device=device).unsqueeze(1)
inv = torch.exp(torch.arange(0, d_model, 2, device=device).float() * -(math.log(10000.0) / d_model))
pe[cur_len:, 0::2] = torch.sin(pos * inv)
pe[cur_len:, 1::2] = torch.cos(pos * inv)
self.pos_enc.pe = pe.unsqueeze(1)
def set_lambdas(self, lambda_K: float, lambda_C: float, lambda_S: float) -> None:
"""Update weighting coefficients for telemetry metrics."""
self.lambda_K = lambda_K
self.lambda_C = lambda_C
self.lambda_S = lambda_S
def _maybe_decompress(self, codes: torch.Tensor) -> torch.Tensor:
"""Return raw bit sequences, decompressing if input appears run-length encoded."""
if codes.dim() <= 1:
return codes
needs_decompress = codes.max().item() > 1
if not needs_decompress and codes.size(1) % 2 == 0:
vals = codes[:, 0::2]
if torch.all(vals[:, 1:] != vals[:, :-1]):
needs_decompress = True
if not needs_decompress:
return codes
seqs = [decompress_bits(row.to(torch.uint8)) for row in codes]
max_len = max(seq.numel() for seq in seqs)
padded = [F.pad(seq, (0, max_len - seq.numel())) for seq in seqs]
return torch.stack(padded)
def negentropy_kpi(self, codes: torch.Tensor) -> torch.Tensor:
"""Approximate negentropy of bit sequences.
Returns a value in ``[0, 1]`` where ``1`` denotes a perfectly ordered
sequence (all zeros or ones) and ``0`` reflects maximal entropy.
"""
codes = self._maybe_decompress(codes)
p = codes.float().mean(dim=1)
entropy = -(p * torch.log(p + 1e-9) + (1 - p) * torch.log(1 - p + 1e-9))
max_e = math.log(2.0)
return 1 - entropy / max_e
def lz_complexity(self, codes: torch.Tensor) -> torch.Tensor:
"""Differentiable proxy for Lempel–Ziv complexity.
Values near ``0`` indicate highly compressible sequences while values
approaching ``1`` correspond to rapid bit alternation.
"""
codes = self._maybe_decompress(codes)
diffs = torch.abs(codes[:, 1:] - codes[:, :-1])
return diffs.float().mean(dim=1)
def negentropy_logits(self, logits: torch.Tensor, detach: bool = True) -> torch.Tensor:
"""Negentropy computed from model logits.
Parameters
----------
logits: ``torch.Tensor``
Logit tensor of shape ``(B, T, 2)``.
detach: bool, default ``True``
When ``True`` the computation is detached from the autograd graph.
"""
assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
prob = logits.softmax(-1)
if detach:
prob = prob.detach()
p = prob[..., 1].mean(dim=1)
entropy = -(p * torch.log(p + 1e-9) + (1 - p) * torch.log(1 - p + 1e-9))
max_e = math.log(2.0)
return 1 - entropy / max_e
def lz_complexity_logits(self, logits: torch.Tensor, detach: bool = True) -> torch.Tensor:
"""LZ complexity proxy computed from logits.
Parameters
----------
logits: ``torch.Tensor``
Logit tensor of shape ``(B, T, 2)``.
detach: bool, default ``True``
When ``True`` the computation is detached from the autograd graph.
"""
assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
prob = logits.softmax(-1)
if detach:
prob = prob.detach()
prob1 = prob[..., 1]
diffs = torch.abs(prob1[:, 1:] - prob1[:, :-1])
return diffs.mean(dim=1)
def symbiosis_kl_logits(
self, logits: torch.Tensor, ref_prob: float = 0.5, detach: bool = True
) -> torch.Tensor:
"""Symbiosis score from KL divergence to a reference distribution.
Returns a value in ``[0, 1]`` with ``1`` meaning perfect agreement with
the reference distribution and ``0`` indicating maximal divergence.
"""
assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
probs = logits.softmax(-1)
if detach:
probs = probs.detach()
ref = torch.tensor([1 - ref_prob, ref_prob], device=logits.device)
kl = (probs * (probs.clamp_min(1e-9).log() - ref.log())).sum(-1).mean(dim=1)
max_kl = math.log(2.0)
return 1 - kl / max_kl
def _act_step(
self,
hidden: torch.Tensor,
idx: int,
halt_prob: torch.Tensor,
act_state: torch.Tensor,
halt_history: List[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor, bool]:
"""Apply one step of ACT halting logic."""
p = torch.sigmoid(self.halt_projs[idx](hidden))
delta = (1 - halt_prob) * p
halt_prob = halt_prob + delta
act_state = act_state + hidden * delta
halt_history.append(halt_prob.detach())
min_prob = halt_prob.detach().min()
if dist.is_initialized():
dist.all_reduce(min_prob, op=dist.ReduceOp.MIN)
return halt_prob, act_state, min_prob.item() >= self.act_threshold
def forward(
self, bit_seq: torch.Tensor, causal: bool = True
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Forward pass returning logits and telemetry from the same graph.
By default the model uses causal masking and (optional) chunked
attention. When ``causal`` is ``False`` the model operates in
"Diffusion LM" mode. In this mode chunked attention is temporarily
disabled so that every token can attend to the full sequence
bidirectionally. The original chunking configuration is restored after
the forward pass.
"""
# Disable chunking when running in bidirectional (non-causal) mode
orig_chunks = None
orig_model_chunk = None
if not causal and self.chunk_size is not None:
orig_model_chunk = self.chunk_size
orig_chunks = [layer.chunk_size for layer in self.layers]
self.chunk_size = None
for layer in self.layers:
layer.chunk_size = None
try:
ctx = cpu_autocast() if self.use_autocast else contextlib.nullcontext()
with ctx:
x = self.embedding(bit_seq).transpose(0, 1) * math.sqrt(self.d_model)
x = self.pos_enc(x)
attn_mask = get_tri_mask(x.size(0), x.device) if causal else None
activations: List[torch.Tensor] = []
attn_maps: List[torch.Tensor] = []
halt_history: List[torch.Tensor] = []
if self.use_act:
halt_prob = torch.zeros(x.size(0), x.size(1), 1, device=x.device)
act_state = torch.zeros_like(x)
if self.reversible:
x1, x2 = x, x
for idx, layer in enumerate(self.layers):
if self.use_checkpoint:
x1, x2, attn = checkpoint.checkpoint(
layer, x1, x2, attn_mask
)
else:
x1, x2, attn = layer(x1, x2, attn_mask)
combined = (x1 + x2) / 2
activations.append(combined)
if attn.numel() > 0:
attn_maps.append(attn)
if self.use_act:
halt_prob, act_state, should_break = self._act_step(
combined, idx, halt_prob, act_state, halt_history
)
if should_break:
break
x = (x1 + x2) / 2
else:
for idx, layer in enumerate(self.layers):
if self.use_checkpoint:
x, attn = checkpoint.checkpoint(layer, x, attn_mask)
else:
x, attn = layer(x, attn_mask)
activations.append(x)
if attn.numel() > 0:
attn_maps.append(attn)
if self.use_act:
halt_prob, act_state, should_break = self._act_step(
x, idx, halt_prob, act_state, halt_history
)
if should_break:
break
if self.use_act:
act_state = act_state + x * (1 - halt_prob)
x = act_state
logits = self.out_head(x)
# Per-layer entropy of activations
entropies = []
for act in activations:
prob = act.softmax(-1)
ent = -(prob * prob.clamp_min(1e-9).log()).sum(-1).mean()
entropies.append(ent)
attn_entropies = []
for attn in attn_maps:
prob = attn # weights are already softmaxed
ent = -(prob * prob.clamp_min(1e-9).log()).sum(-1)
ent = ent.mean(1)
attn_entropies.append(ent)
if attn_entropies:
attn_entropy_map = torch.stack(attn_entropies).mean(0)
else:
attn_entropy_map = torch.zeros(
bit_seq.size(0), bit_seq.size(1), device=bit_seq.device
)
max_ent = math.log(attn_entropy_map.size(-1))
attn_entropy_map = attn_entropy_map / max_ent
attn_entropy = attn_entropy_map.mean(1)
logits_bt = logits.transpose(0, 1)
negentropy_in = self.negentropy_kpi(bit_seq)
lz_in = self.lz_complexity(bit_seq.float())
negentropy_logits_b = self.negentropy_logits(logits_bt, detach=False)
lz_logits_b = self.lz_complexity_logits(logits_bt, detach=False)
kl_div_b = self.symbiosis_kl_logits(logits_bt, detach=False)
raw_sym = (
(self.lambda_K * negentropy_logits_b + self.lambda_C * lz_logits_b) / 2
+ negentropy_logits_b * lz_logits_b
- self.lambda_S * kl_div_b
- 0.1 * attn_entropy
)
weight_norm = torch.stack([p.norm() for p in self.parameters()]).mean().detach()
raw_sym = raw_sym - 0.01 * weight_norm
sym_score = torch.sigmoid(raw_sym)
B, T = bit_seq.shape
assert logits_bt.shape[:2] == (B, T)
assert attn_entropy_map.shape == (B, T)
telemetry = {
"activations": activations,
"attention_maps": attn_maps,
"attention_entropy": attn_entropy_map,
"entropy": entropies,
"attention_entropy_mean": attn_entropy,
"negentropy_input": negentropy_in.detach(),
"lz_complexity_input": lz_in.detach(),
"negentropy_logits": negentropy_logits_b.detach(),
"lz_complexity_logits": lz_logits_b.detach(),
"symbiosis_kl": kl_div_b.detach(),
"symbiosis_score": sym_score.detach(),
}
if self.use_act:
telemetry["halt_probs"] = halt_history
return logits_bt, telemetry
finally:
if orig_chunks is not None:
self.chunk_size = orig_model_chunk
for layer, chunk in zip(self.layers, orig_chunks):
layer.chunk_size = chunk
def forward_compressed(
self, compressed_bits, causal: bool = True
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Decompress bit sequences then run the normal forward pass."""
if isinstance(compressed_bits, torch.Tensor) and compressed_bits.dim() == 1:
sequences = [decompress_bits(compressed_bits).to(torch.long)]
else:
sequences = [decompress_bits(c).to(torch.long) for c in compressed_bits]
lengths = [seq.numel() for seq in sequences]
if len(set(lengths)) != 1:
raise ValueError("Sequences decompress to different lengths")
bits = torch.stack(sequences)
return self.forward(bits, causal=causal)
def _current_params(self) -> Dict:
"""Return a dictionary with the current model hyperparameters."""
return {
"d_model": self.d_model,
"nhead": self.layers[0].self_attn.num_heads,
"num_layers": self.num_layers,
"dim_feedforward": self.layers[0].linear1.out_features,
"max_seq_len": self.pos_enc.pe.size(0),
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
"reversible": self.reversible,
"use_checkpoint": self.use_checkpoint,
"use_autocast": self.use_autocast,
"use_act": self.use_act,
"act_threshold": self.act_threshold,
"chunk_size": self.chunk_size,
"overlap": self.overlap,
}
def double_width(self) -> "BitTransformerLM":
"""Return a copy of the model with doubled hidden size."""
from .scale import expand_model
params = self._current_params()
params["d_model"] *= 2
params["dim_feedforward"] *= 2
return expand_model(self, params)
def double_layers(self) -> "BitTransformerLM":
"""Return a copy of the model with twice as many layers."""
from .scale import expand_model
params = self._current_params()
params["num_layers"] *= 2
return expand_model(self, params)
def double_length(self) -> "BitTransformerLM":
"""Return a copy of the model with doubled maximum sequence length."""
from .scale import expand_model
params = self._current_params()
params["max_seq_len"] *= 2
params["chunk_size"] = params["max_seq_len"]
return expand_model(self, params)
def train_full_sequence(
self,
bits: torch.Tensor,
*,
ctx_bits: int = 4096,
detach_every_n: int = 1_048_576,
) -> float:
"""Train on a long bit tensor using sliding windows.
Parameters
----------
bits: ``torch.Tensor``
1D tensor containing the full bit sequence.
ctx_bits: int
Size of the training context window.
detach_every_n: int
Interval in bits for optimizer updates and graph detachment.
Returns
-------
float
Mean loss over all windows.
"""
self.train()
optimizer, scheduler = configure_optimizer(
self, lr=1e-3, total_steps=max(1, bits.numel() // ctx_bits)
)
accum = 0
total_loss = 0.0
count = 0
for start in range(0, bits.numel() - ctx_bits - 1, ctx_bits):
segment = bits[start : start + ctx_bits + 1].unsqueeze(0)
logits, _ = self(segment)
pred = logits[:, :-1, :].reshape(-1, 2)
target = segment[:, 1:].reshape(-1)
loss = F.cross_entropy(pred, target)
loss.backward()
accum += ctx_bits
total_loss += loss.item()
count += 1
if accum >= detach_every_n:
torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
accum = 0
if accum > 0:
torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return total_loss / max(1, count)
def infer_long_sequence(
model: BitTransformerLM,
bits: torch.Tensor,
*,
ctx_bits: int = 4096,
overlap: int = 256,
) -> Tuple[torch.Tensor, List[Dict[str, torch.Tensor]]]:
"""Infer a long bit sequence using sliding windows with overlap."""
model.eval()
device = next(model.parameters()).device
bits = bits.to(device)
step = ctx_bits - overlap
outputs: List[torch.Tensor] = []
logs: List[Dict[str, torch.Tensor]] = []
for start in range(0, bits.numel(), step):
window = bits[start : start + ctx_bits].unsqueeze(0)
logits, tele = model(window, causal=True)
pred = logits.argmax(-1).squeeze(0)
outputs.append(pred)
logs.append(tele)
out = torch.cat(outputs)[: bits.numel()]
return out, logs
def diffusion_inference(
model: BitTransformerLM,
*,
length: int,
steps: int = 8,
batch_size: int = 1,
init_bits: Optional[torch.Tensor] = None,
schedule: str = "linear",
) -> torch.Tensor:
"""Generate bit sequences using iterative denoising diffusion.
Parameters
----------
model: ``BitTransformerLM``
The model used for denoising. It is run in non-causal mode with
chunked attention disabled, enabling full-context bidirectional
attention.
length: int
Length of the bit sequences to generate.
steps: int, default ``8``
Number of denoising iterations. More steps generally yield sharper
samples at the cost of compute.
batch_size: int, default ``1``
Number of sequences to generate in parallel.
init_bits: ``torch.Tensor`` | ``None``
Optional initial noisy bits of shape ``(batch_size, length)``. When
``None`` random noise is used.
schedule: str, default ``"linear"``
Noise schedule for the denoising mask probability. Options are
``"linear"``, ``"cosine"``, and ``"exp"``.
Returns
-------
``torch.Tensor``
A tensor of shape ``(batch_size, length)`` containing generated bits.
"""
model.eval()
device = next(model.parameters()).device
if init_bits is None:
bits = torch.randint(0, 2, (batch_size, length), device=device)
else:
bits = init_bits.to(device)
if bits.shape != (batch_size, length):
raise ValueError("init_bits must have shape (batch_size, length)")
for step in range(steps):
logits, _ = model(bits, causal=False)
prob = logits.softmax(-1)[..., 1]
t = (step + 1) / steps
if schedule == "linear":
mask_prob = 1.0 - t
elif schedule == "cosine":
mask_prob = math.cos(math.pi * t / 2)
elif schedule == "exp":
mask_prob = math.exp(-5 * t)
else:
raise ValueError(f"unknown schedule: {schedule}")
mask = (torch.rand_like(bits.float()) < mask_prob).long()
sampled = torch.bernoulli(prob).long()
bits = torch.where(mask.bool(), sampled, bits)
if bits.shape[-1] % 9 == 0:
bits, corrections = enforce_parity(bits)
if corrections:
logging.info("Parity corrections applied: %d", corrections)
try:
from .safety import hil_safe_inference
hil_safe_inference(model, bits, causal=False, strict=False)
except RuntimeError as exc:
logging.warning("Safety gate warning: %s", exc)
return bits
def example_usage() -> float:
"""Run the example from the README and return the loss."""
B, L = 4, 16
model = BitTransformerLM(
d_model=64, nhead=4, num_layers=2, dim_feedforward=256, max_seq_len=L
)
bits = torch.randint(0, 2, (B, L), dtype=torch.long)
logits, _ = model(bits)
pred = logits[:, :-1, :].reshape(-1, 2)
target = bits[:, 1:].reshape(-1)
loss = F.cross_entropy(pred, target)
return loss.item()
def example_training_step() -> Tuple[float, Dict[str, torch.Tensor]]:
"""Demonstrate a training step where metrics do not affect gradients."""
B, L = 4, 16
model = BitTransformerLM(
d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=L
)
optimizer, scheduler = configure_optimizer(model, lr=1e-3, total_steps=1)
bits = torch.randint(0, 2, (B, L), dtype=torch.long)
logits, telemetry = model(bits)
pred = logits[:, :-1, :].reshape(-1, 2)
target = bits[:, 1:].reshape(-1)
loss = F.cross_entropy(pred, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return loss.item(), telemetry
if __name__ == "__main__":
loss, telemetry = example_training_step()
print("Composite loss:", loss)
print("Telemetry keys:", list(telemetry.keys()))
|