WCNegentropy's picture
🤖 Updated BitTransformerLM from development space
36c78b1 verified
raw
history blame
32.8 kB
import io
import json
import os
import traceback
import inspect
from typing import Any, Dict, List, Optional, Union
from flask import Flask, jsonify, request, render_template, send_file
import subprocess
import sys
import warnings
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import requests
import gzip
from .model import BitTransformerLM, infer_long_sequence
from .optimization import configure_optimizer
from .collapse import collapse_submodel
from .dashboard import plot_telemetry
from .scale import expand_model
from .bit_io import text_to_bits, bits_to_text
from .safety import hil_safe_inference
from .compression import model_output_decompress, compress_bits
from .distributed import wrap_fsdp
from .training import train_loop
from .telemetry import detect_metric_drift
from .quantization import prepare_qat_fx, convert_qat_fx
from torch.distributed.fsdp import FullyShardedDataParallel
from .hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
app = Flask(__name__)
app.config["MAX_CONTENT_LENGTH"] = 1 * 1024 * 1024 # 1MB upload limit
MCP_SERVER_ADDR = os.getenv("MCP_SERVER_ADDR")
@app.errorhandler(Exception)
def handle_exception(err):
"""Return JSON error responses with stack traces."""
return (
jsonify({"error": str(err), "trace": traceback.format_exc()}),
getattr(err, "code", 500),
)
class MetricDriftWarning(UserWarning):
"""Raised when telemetry metrics drift beyond the configured threshold."""
def _switch_torch(use_gpu: bool) -> None:
"""Install the appropriate PyTorch wheel and restart the process."""
have_cuda = torch.version.cuda is not None
if use_gpu == have_cuda:
return
wheel = "torch==2.7.1+cu118" if use_gpu else "torch==2.7.1+cpu"
url = "https://download.pytorch.org/whl/cu118" if use_gpu else "https://download.pytorch.org/whl/cpu"
subprocess.run([
sys.executable,
"-m",
"pip",
"install",
"--extra-index-url",
url,
wheel,
], check=True)
os.execv(sys.executable, [sys.executable] + sys.argv)
def mcp_post(path: str, data=None):
if not MCP_SERVER_ADDR:
return None
url = MCP_SERVER_ADDR.rstrip("/") + path
resp = requests.post(url, json=data)
resp.raise_for_status()
if resp.headers.get("Content-Type", "").startswith("image/"):
return resp.content
return resp.json()
def mcp_get(path: str):
if not MCP_SERVER_ADDR:
return None
url = MCP_SERVER_ADDR.rstrip("/") + path
resp = requests.get(url)
resp.raise_for_status()
if resp.headers.get("Content-Type", "").startswith("image/"):
return resp.content
return resp.json()
class ModelManager:
"""Manage model state and training utilities for the dashboard."""
def __init__(
self,
snapshot_dir: Optional[str] = None,
telemetry_log: Optional[str] = None,
*,
drift_window: int = 10,
drift_threshold: float = 0.2,
) -> None:
self.snapshot_dir = snapshot_dir or os.getenv("SNAPSHOT_DIR", "snapshots")
self.telemetry_log = telemetry_log or os.getenv("TELEMETRY_LOG")
if self.telemetry_log is None:
self.telemetry_log = os.path.join(self.snapshot_dir, "metrics.json")
os.makedirs(self.snapshot_dir, exist_ok=True)
self.weights_path = os.path.join(self.snapshot_dir, "model.pt")
self.model: Optional[BitTransformerLM] = None
self.optimizer: Optional[torch.optim.Optimizer] = None
self.scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None
self.total_steps = 100
self.metrics: Dict[str, List[float]] = {
"negentropy_logits": [],
"lz_complexity_logits": [],
"symbiosis_score": [],
}
self.drift_window = drift_window
self.drift_threshold = drift_threshold
self.lambda_K = 1.0
self.lambda_C = 1.0
self.lambda_S = 1.0
self.c_floor = 0.3
self.s_floor = 0.5
self.causal = True
self.diffusion = False
self.decompress_output = False
self.use_compression = False
self.use_gpu = False
self.qat = False
# Load any existing state
if os.path.exists(self.telemetry_log):
try:
with open(self.telemetry_log) as f:
saved = json.load(f)
for key in self.metrics:
self.metrics[key] = saved.get(key, [])
except Exception:
pass
if os.path.exists(self.weights_path):
try:
self.model = torch.load(self.weights_path, map_location="cpu")
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._apply_device()
except Exception:
self.model = None
config_path = os.getenv("MODEL_CONFIG", "/config/model_params.json")
if self.model is None and os.path.exists(config_path):
try:
with open(config_path) as f:
params = json.load(f)
self.init_model(params)
except Exception:
pass
def init_model(self, params: Dict) -> None:
int_fields = {
"d_model",
"nhead",
"num_layers",
"dim_feedforward",
"max_seq_len",
"chunk_size",
"overlap",
}
float_fields = {"act_threshold"}
bool_fields = {"reversible", "use_checkpoint"}
clean: Dict[str, Any] = {}
for k, v in params.items():
if v is None:
clean[k] = None
elif k in int_fields:
clean[k] = int(v)
elif k in float_fields:
clean[k] = float(v)
elif k in bool_fields:
clean[k] = bool(v)
else:
clean[k] = v
self.model = BitTransformerLM(
**clean,
lambda_K=self.lambda_K,
lambda_C=self.lambda_C,
lambda_S=self.lambda_S,
)
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._apply_device()
for key in self.metrics:
self.metrics[key].clear()
def set_lambdas(self, k: float, c: float, s: float) -> None:
"""Update λ weights and propagate to the model."""
self.lambda_K = k
self.lambda_C = c
self.lambda_S = s
if self.model is not None:
self.model.set_lambdas(k, c, s)
def set_floors(self, c_floor: float, s_floor: float) -> None:
"""Update safety floors for complexity (C) and symbiosis (S)."""
self.c_floor = c_floor
self.s_floor = s_floor
def set_diffusion(self, flag: bool) -> None:
"""Toggle Diffusion LM mode which disables causal masking and chunking."""
self.diffusion = flag
self.causal = not flag
if self.model is not None and flag:
self.model.chunk_size = None
def set_decompress_output(self, flag: bool) -> None:
"""Enable or disable decompression of model outputs."""
self.decompress_output = flag
def set_compression(self, flag: bool) -> None:
"""Toggle automatic compression of inputs."""
self.use_compression = flag
def set_qat(self, flag: bool) -> None:
"""Enable or disable 4-bit quantization-aware training."""
self.qat = flag
if self.model is None:
return
if flag:
self.model = prepare_qat_fx(self.model)
else:
self.model = convert_qat_fx(self.model)
def set_gpu(self, flag: bool) -> None:
"""Toggle GPU acceleration and FSDP, reinstalling PyTorch if needed."""
_switch_torch(flag)
self.use_gpu = flag and torch.cuda.is_available()
self._apply_device()
def _apply_device(self) -> None:
"""Move the model to the selected device and wrap with FSDP if needed."""
if self.model is None:
return
if self.use_gpu:
device = torch.device("cuda")
if isinstance(self.model, FullyShardedDataParallel):
base = self.model.module
else:
base = self.model
base = base.to(device)
self.model = wrap_fsdp(base, device_id=device)
else:
device = torch.device("cpu")
if isinstance(self.model, FullyShardedDataParallel):
self.model = self.model.module
self.model = self.model.to(device)
def train_step(self, bits: torch.Tensor) -> float:
assert (
self.model is not None
and self.optimizer is not None
and self.scheduler is not None
)
self.model.train()
device = next(self.model.parameters()).device
bits = bits.to(device)
ratio = 1.0
if self.use_compression:
comps = [compress_bits(row.to(torch.uint8)) for row in bits]
comp_len = sum(c.numel() for c in comps)
ratio = min(comp_len / bits.numel(), 1.0)
logits, telemetry = self.model.forward_compressed(comps, causal=self.causal)
else:
logits, telemetry = self.model(bits, causal=self.causal)
pred = logits[:, :-1, :].reshape(-1, 2)
target = bits[:, 1:].reshape(-1)
loss = F.cross_entropy(pred, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
self._log_metrics(telemetry)
self._save_state()
return loss.item(), ratio
def train_epochs(
self,
bits: torch.Tensor,
*,
epochs: int = 1,
compress_prob: float = 0.5,
direct_prob: float = 0.0,
batch_size: int = 8,
num_workers: int = 0,
accum_steps: int = 1,
amp: bool = False,
compile_model: bool = False,
) -> List[Dict[str, float]]:
"""Run ``train_loop`` on a batch tensor and persist the state."""
assert self.model is not None
device = next(self.model.parameters()).device
bits = bits.to(device)
import math
steps_per_epoch = max(1, math.ceil(len(bits) / batch_size))
self.total_steps = math.ceil(epochs * steps_per_epoch / accum_steps)
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
metrics = train_loop(
self.model,
bits,
epochs=epochs,
compress_prob=compress_prob if self.use_compression else 0.0,
direct_prob=direct_prob,
batch_size=batch_size,
num_workers=num_workers,
accum_steps=accum_steps,
amp=amp,
compile_model=compile_model,
forward_kwargs={"causal": self.causal},
optimizer=self.optimizer,
scheduler=self.scheduler,
)
self._save_state()
return metrics
def scale_up(self, width_mult: float = 1.0) -> None:
assert self.model is not None
params = dict(
d_model=int(self.model.d_model * width_mult),
nhead=self.model.layers[0].self_attn.num_heads,
num_layers=self.model.num_layers * 2,
dim_feedforward=int(self.model.layers[0].linear1.out_features * width_mult),
max_seq_len=self.model.pos_enc.pe.size(0),
)
self.model = expand_model(self.model, {
**params,
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
})
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._save_state()
def collapse(self, cluster_bits: List[List[int]], target_params: Dict, width_scale: float = 1.0) -> None:
self.model, _ = collapse_submodel(
cluster_bits,
target_params,
width_scale=width_scale,
forward_kwargs={"causal": self.causal},
)
self.model.set_lambdas(self.lambda_K, self.lambda_C, self.lambda_S)
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._apply_device()
for key in self.metrics:
self.metrics[key].clear()
def infer(self, bits: torch.Tensor) -> Dict:
assert self.model is not None
self.model.eval()
device = next(self.model.parameters()).device
bits = bits.to(device)
ratio = 1.0
with torch.no_grad():
if self.use_compression:
comps = [compress_bits(row.to(torch.uint8)) for row in bits]
comp_len = sum(c.numel() for c in comps)
ratio = min(comp_len / bits.numel(), 1.0)
logits, telemetry = self.model.forward_compressed(comps, causal=self.causal)
else:
logits, telemetry = self.model(bits, causal=self.causal)
self._log_metrics(telemetry)
pred_bits = logits.argmax(-1)
if self.decompress_output:
try:
pred_bits = model_output_decompress(pred_bits)
except Exception as e:
return {"error": f"Decompression failed: {e}", "suggestion": "Disable compression toggle."}
def _to_python(obj):
if isinstance(obj, torch.Tensor):
return obj.tolist()
if isinstance(obj, list):
return [_to_python(o) for o in obj]
if isinstance(obj, dict):
return {kk: _to_python(vv) for kk, vv in obj.items()}
return obj
tele = {k: _to_python(v) for k, v in telemetry.items()}
return {"predicted": pred_bits.squeeze(0).tolist(), "telemetry": tele, "ratio": ratio}
def infer_long(self, bits: torch.Tensor, ctx_bits: int = 4096, overlap: int = 256) -> Dict:
"""Run sliding-window inference on a long sequence."""
assert self.model is not None
device = next(self.model.parameters()).device
bits = bits.to(device)
preds, logs = infer_long_sequence(self.model, bits.squeeze(0), ctx_bits=ctx_bits, overlap=overlap)
for tele in logs:
self._log_metrics(tele)
return {"predicted": preds.tolist(), "windows": len(logs)}
def _log_metrics(self, telemetry: Dict) -> None:
for key in self.metrics:
val = telemetry[key].mean().item()
self.metrics[key].append(val)
drift = detect_metric_drift(
self.metrics, window=self.drift_window, threshold=self.drift_threshold
)
bad = [k for k, v in drift.items() if v]
if bad:
warnings.warn(
f"Metric drift detected: {', '.join(bad)}",
MetricDriftWarning,
)
def infer_text(self, text: str) -> Dict[str, Any]:
"""Run text through the model using the safety gate."""
assert self.model is not None
device = next(self.model.parameters()).device
bits = torch.tensor(text_to_bits(text), dtype=torch.long).unsqueeze(0).to(device)
out_bits, telemetry = hil_safe_inference(
self.model, bits, c_floor=self.c_floor, s_floor=self.s_floor
)
self._log_metrics(telemetry)
return {
"output": bits_to_text(out_bits.squeeze(0).tolist()),
"telemetry": telemetry,
}
def get_status(self) -> Dict[str, Any]:
info: Dict[str, Any] = {
"use_gpu": self.use_gpu,
"diffusion": self.diffusion,
"compression": self.use_compression,
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
"c_floor": self.c_floor,
"s_floor": self.s_floor,
"qat": self.qat,
}
if self.model is not None:
info.update(
{
"d_model": self.model.d_model,
"num_layers": self.model.num_layers,
"d_ff": self.model.layers[0].linear1.out_features,
"nhead": self.model.layers[0].self_attn.num_heads,
"max_seq_len": self.model.pos_enc.pe.size(0),
}
)
else:
info.update(
{
"d_model": None,
"num_layers": 0,
"d_ff": None,
"nhead": None,
"max_seq_len": None,
}
)
return info
def get_model_config(self) -> Dict[str, Any]:
"""Return current model hyperparameters and safety settings."""
cfg: Dict[str, Any] = {
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
"c_floor": self.c_floor,
"s_floor": self.s_floor,
}
if self.model is not None:
cfg.update(
{
"d_model": self.model.d_model,
"nhead": self.model.layers[0].self_attn.num_heads,
"num_layers": self.model.num_layers,
"dim_feedforward": self.model.layers[0].linear1.out_features,
"max_seq_len": self.model.pos_enc.pe.size(0),
"chunk_size": self.model.chunk_size,
"reversible": self.model.reversible,
"use_checkpoint": self.model.use_checkpoint,
}
)
else:
cfg.update(
{
"d_model": None,
"nhead": None,
"num_layers": 0,
"dim_feedforward": None,
"max_seq_len": None,
"chunk_size": None,
"reversible": None,
"use_checkpoint": None,
}
)
return cfg
def get_metrics(self) -> Dict[str, Any]:
"""Return logged telemetry metrics with summary statistics."""
from statistics import mean, stdev
data = {
"negentropy": self.metrics["negentropy_logits"],
"lz_complexity": self.metrics["lz_complexity_logits"],
"symbiosis": self.metrics["symbiosis_score"],
}
summary: Dict[str, Dict[str, Optional[float]]] = {}
for key, values in data.items():
if values:
m = mean(values)
s = stdev(values) if len(values) > 1 else 0.0
summary[key] = {"mean": m, "std": s}
else:
summary[key] = {"mean": None, "std": None}
data["summary"] = summary
return data
def _save_state(self) -> None:
if self.model is None:
return
torch.save(self.model, self.weights_path)
with open(self.telemetry_log, "w") as f:
json.dump(self.metrics, f)
manager: Optional[ModelManager] = None
@app.route("/")
def index():
return render_template(
"dashboard.html",
metrics=manager.metrics,
lambdas={
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
},
diffusion=manager.diffusion,
compression=manager.use_compression,
defaults={k: v.default for k, v in inspect.signature(BitTransformerLM.__init__).parameters.items() if v.default is not inspect._empty},
c_floor=manager.c_floor,
s_floor=manager.s_floor,
qat=manager.qat,
)
@app.route("/status", methods=["GET"])
def status():
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/status"))
return jsonify(manager.get_status())
@app.route("/model_config", methods=["GET"])
def model_config():
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/model_config"))
return jsonify(manager.get_model_config())
@app.route("/metrics", methods=["GET"])
def metrics():
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/metrics"))
return jsonify(manager.get_metrics())
@app.route("/save_checkpoint", methods=["POST"])
def save_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/save_checkpoint", {"repo_id": repo_id, "token": token}))
if manager.model is None:
return jsonify({"error": "model not initialized"}), 400
if token:
hf_login(token=token)
save_checkpoint(manager.model, repo_id=repo_id)
return jsonify({"status": "saved"})
@app.route("/download_checkpoint", methods=["POST"])
def download_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/download_checkpoint", {"repo_id": repo_id, "token": token}))
if token:
hf_login(token=token)
dest = manager.weights_path + ".gz"
ok = download_checkpoint(dest, repo_id=repo_id)
if not ok:
return jsonify({"status": "failed"}), 500
if manager.model is None:
return jsonify({"status": "downloaded", "loaded": False})
with gzip.open(dest, "rb") as f:
state = torch.load(f, map_location="cpu")
manager.model.load_state_dict(state)
manager.optimizer, manager.scheduler = configure_optimizer(
manager.model, lr=1e-3, total_steps=manager.total_steps
)
manager._apply_device()
manager._save_state()
return jsonify({"status": "downloaded", "loaded": True})
@app.route("/text_to_bits", methods=["POST"])
def text_to_bits_route():
text = request.json.get("text", "")
if len(text) > 100_000:
return jsonify({"error": "text too large"}), 413
return jsonify({"bits": text_to_bits(text)})
@app.route("/dataset", methods=["GET"])
def dataset_route():
name = request.args.get("name", "")
split = request.args.get("split", "train")
size = int(request.args.get("size", 1))
seq_len = int(request.args.get("seq_len", 64))
if size * seq_len > 1_000_000:
return jsonify({"error": "dataset too large"}), 413
if name == "wikitext2":
try:
from datasets import load_dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split=split)
lines = [t for t in ds["text"] if t.strip()][:size]
except Exception:
bits = torch.randint(0, 2, (size, seq_len), dtype=torch.long)
return jsonify({"bits": bits.tolist()})
bits_list = []
for text in lines:
b = text_to_bits(text)[:seq_len]
if len(b) < seq_len:
b.extend([0] * (seq_len - len(b)))
bits_list.append(b)
if len(bits_list) < size:
pad = size - len(bits_list)
bits_list.extend(torch.randint(0, 2, (pad, seq_len), dtype=torch.long).tolist())
return jsonify({"bits": bits_list})
return jsonify({"error": "unknown dataset"}), 400
@app.route("/init", methods=["POST"])
def init_model():
data = request.json or {}
int_fields = {
"d_model",
"nhead",
"num_layers",
"dim_feedforward",
"max_seq_len",
"chunk_size",
"overlap",
}
float_fields = {"act_threshold"}
bool_fields = {"reversible", "use_checkpoint"}
params = {}
for k, v in data.items():
if v is None:
params[k] = None
elif k in int_fields:
params[k] = int(v)
elif k in float_fields:
params[k] = float(v)
elif k in bool_fields:
params[k] = bool(v)
else:
params[k] = v
if MCP_SERVER_ADDR:
data = mcp_post("/init", params)
return jsonify(data)
manager.init_model(params)
return jsonify({"status": "initialized", "params": params})
@app.route("/train", methods=["POST"])
def train_model():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
if MCP_SERVER_ADDR:
data = mcp_post("/train", {"bits": request.json["bits"]})
return jsonify(data)
loss, ratio = manager.train_step(bits)
return jsonify({"loss": loss, "ratio": ratio})
@app.route("/train_epochs", methods=["POST"])
def train_epochs_route():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
epochs = int(request.json.get("epochs", 1))
compress_prob = float(request.json.get("compress_prob", 0.5))
direct_prob = float(request.json.get("direct_prob", 0.0))
if MCP_SERVER_ADDR:
data = mcp_post(
"/train_epochs",
{
"bits": request.json["bits"],
"epochs": epochs,
"compress_prob": compress_prob,
"direct_prob": direct_prob,
},
)
return jsonify(data)
metrics = manager.train_epochs(
bits,
epochs=epochs,
compress_prob=compress_prob,
direct_prob=direct_prob,
)
return jsonify({"metrics": metrics})
@app.route("/scale_up", methods=["POST"])
def scale_up():
width_mult = float(request.json.get("width_mult", 1.0))
if MCP_SERVER_ADDR:
data = mcp_post("/scale_up", {"width_mult": width_mult})
return jsonify(data)
manager.scale_up(width_mult)
return jsonify({
"status": "scaled",
"layers": manager.model.num_layers,
"d_model": manager.model.d_model,
})
@app.route("/collapse", methods=["POST"])
def collapse_model():
cluster_bits = request.json["clusters"]
params = {k: int(v) for k, v in request.json["params"].items()}
width_scale = float(request.json.get("width_scale", 1.0))
if MCP_SERVER_ADDR:
data = mcp_post(
"/collapse",
{"clusters": cluster_bits, "params": params, "width_scale": width_scale},
)
return jsonify(data)
manager.collapse(cluster_bits, params, width_scale)
return jsonify({"status": "collapsed"})
@app.route("/lambdas", methods=["GET", "POST"])
def update_lambdas():
if request.method == "POST":
data = request.json
if MCP_SERVER_ADDR:
res = mcp_post("/lambdas", data)
return jsonify(res)
manager.set_lambdas(
float(data["lambda_K"]), float(data["lambda_C"]), float(data["lambda_S"])
)
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/lambdas"))
return jsonify(
{
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
}
)
@app.route("/config/telemetry", methods=["GET", "POST"])
def telemetry_config():
"""Get or update telemetry λ weights and safety floors."""
if request.method == "POST":
data = request.json
if MCP_SERVER_ADDR:
res = mcp_post("/config/telemetry", data)
return jsonify(res)
manager.set_lambdas(
float(data.get("lambda_K", manager.lambda_K)),
float(data.get("lambda_C", manager.lambda_C)),
float(data.get("lambda_S", manager.lambda_S)),
)
manager.set_floors(
float(data.get("c_floor", manager.c_floor)),
float(data.get("s_floor", manager.s_floor)),
)
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/config/telemetry"))
return jsonify(
{
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
"c_floor": manager.c_floor,
"s_floor": manager.s_floor,
}
)
@app.route("/diffusion", methods=["GET", "POST"])
def update_diffusion():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/diffusion", request.json))
manager.set_diffusion(bool(request.json.get("diffusion", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/diffusion"))
return jsonify({"diffusion": manager.diffusion})
@app.route("/gpu", methods=["GET", "POST"])
def update_gpu():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/gpu", request.json))
manager.set_gpu(bool(request.json.get("use_gpu", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/gpu"))
return jsonify({"use_gpu": manager.use_gpu})
@app.route("/compression", methods=["GET", "POST"])
def update_compression():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/compression", request.json))
manager.set_compression(bool(request.json.get("compression", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/compression"))
return jsonify({"compression": manager.use_compression})
@app.route("/qat", methods=["GET", "POST"])
def update_qat():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/qat", request.json))
manager.set_qat(bool(request.json.get("qat", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/qat"))
return jsonify({"qat": manager.qat})
@app.route("/infer", methods=["POST"])
def inference():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
if MCP_SERVER_ADDR:
data = mcp_post("/infer", {"bits": request.json["bits"]})
return jsonify(data)
result = manager.infer(bits)
return jsonify(result)
@app.route("/infer_long", methods=["POST"])
def inference_long():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
ctx = int(request.json.get("ctx_bits", 4096))
overlap = int(request.json.get("overlap", 256))
if MCP_SERVER_ADDR:
data = mcp_post(
"/infer_long",
{"bits": request.json["bits"], "ctx_bits": ctx, "overlap": overlap},
)
return jsonify(data)
result = manager.infer_long(bits, ctx_bits=ctx, overlap=overlap)
return jsonify(result)
@app.route("/infer_text", methods=["POST"])
def inference_text():
text = request.json.get("text", "")
if MCP_SERVER_ADDR:
data = mcp_post("/infer_text", {"text": text})
return jsonify(data)
result = manager.infer_text(text)
return jsonify(result)
@app.route("/plot.png")
def plot_png():
if MCP_SERVER_ADDR:
resp = requests.get(MCP_SERVER_ADDR.rstrip("/") + "/plot.png")
resp.raise_for_status()
return send_file(io.BytesIO(resp.content), mimetype="image/png")
fig, _ = plot_telemetry(manager.metrics)
buf = io.BytesIO()
fig.savefig(buf, format="png")
plt.close(fig)
buf.seek(0)
return send_file(buf, mimetype="image/png")
def run_dashboard(host: Optional[str] = None, port: Optional[int] = None,
snapshot_dir: Optional[str] = None, telemetry_log: Optional[str] = None) -> None:
"""Launch the Flask dashboard server."""
env_host = os.getenv("HOST", "0.0.0.0")
env_port = int(os.getenv("PORT", "5000"))
host = host or env_host
port = port or env_port
global manager
if manager is None:
manager = ModelManager(snapshot_dir, telemetry_log)
app.run(host=host, port=port, debug=True)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Run dashboard server")
parser.add_argument("--host", default=os.getenv("HOST", "0.0.0.0"))
parser.add_argument("--port", type=int, default=int(os.getenv("PORT", "5000")))
parser.add_argument("--snapshot-dir", default=os.getenv("SNAPSHOT_DIR", "snapshots"))
parser.add_argument("--telemetry-log", default=os.getenv("TELEMETRY_LOG"))
args = parser.parse_args()
run_dashboard(args.host, args.port, args.snapshot_dir, args.telemetry_log)