BitTransformerLM / mcp_server.py
WCNegentropy's picture
🤖 Updated BitTransformerLM from development space
36c78b1 verified
raw
history blame
15.4 kB
import io
import os
import gzip
import uuid
import traceback
from concurrent.futures import ThreadPoolExecutor
from flask import Flask, request, jsonify, send_file
import matplotlib.pyplot as plt
import torch
from bit_transformer.dashboard_app import ModelManager
from bit_transformer.dashboard import plot_telemetry
from bit_transformer.hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
from bit_transformer.optimization import configure_optimizer
from bit_transformer.bit_io import text_to_bits
from bit_transformer.dataset_builder import BitTransformerDatasetBuilder, create_bittransformerlm_dataset
app = Flask(__name__)
manager = ModelManager()
# background job management
executor = ThreadPoolExecutor(max_workers=4)
jobs: dict[str, dict] = {}
def _submit_job(fn, *args, **kwargs) -> str:
"""Schedule a function for background execution and return a job id."""
job_id = str(uuid.uuid4())
jobs[job_id] = {"status": "queued", "result": None, "error": None, "logs": []}
def wrapper():
jobs[job_id]["status"] = "running"
try:
jobs[job_id]["result"] = fn(*args, **kwargs)
jobs[job_id]["status"] = "completed"
except Exception as err: # pragma: no cover - captured for client
jobs[job_id]["status"] = "error"
jobs[job_id]["error"] = str(err)
jobs[job_id]["trace"] = traceback.format_exc()
executor.submit(wrapper)
return job_id
@app.errorhandler(Exception)
def handle_exception(err):
"""Return JSON error responses with stack traces."""
return (
jsonify({"error": str(err), "trace": traceback.format_exc()}),
getattr(err, "code", 500),
)
@app.route("/init", methods=["POST"])
def init_model():
data = request.json or {}
int_fields = {
"d_model",
"nhead",
"num_layers",
"dim_feedforward",
"max_seq_len",
"chunk_size",
"overlap",
}
float_fields = {"act_threshold"}
bool_fields = {"reversible", "use_checkpoint"}
params = {}
for k, v in data.items():
if v is None:
params[k] = None
elif k in int_fields:
params[k] = int(v)
elif k in float_fields:
params[k] = float(v)
elif k in bool_fields:
params[k] = bool(v)
else:
params[k] = v
manager.init_model(params)
return jsonify({"status": "initialized", "params": params})
@app.route("/train", methods=["POST"])
def train_model():
bits = request.json["bits"]
def task():
tensor = torch.tensor(bits, dtype=torch.long)
loss, ratio = manager.train_step(tensor)
return {"loss": loss, "ratio": ratio}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/train_epochs", methods=["POST"])
def train_epochs_route():
data = request.json
bits = data["bits"]
epochs = int(data.get("epochs", 1))
compress_prob = float(data.get("compress_prob", 0.5))
direct_prob = float(data.get("direct_prob", 0.0))
def task():
tensor = torch.tensor(bits, dtype=torch.long)
metrics = manager.train_epochs(
tensor,
epochs=epochs,
compress_prob=compress_prob,
direct_prob=direct_prob,
)
return {"metrics": metrics}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/scale_up", methods=["POST"])
def scale_up():
width_mult = float(request.json.get("width_mult", 1.0))
def task():
manager.scale_up(width_mult)
return {
"status": "scaled",
"layers": manager.model.num_layers,
"d_model": manager.model.d_model,
}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/collapse", methods=["POST"])
def collapse_model():
cluster_bits = request.json["clusters"]
params = {k: int(v) for k, v in request.json["params"].items()}
width_scale = float(request.json.get("width_scale", 1.0))
def task():
manager.collapse(cluster_bits, params, width_scale)
return {"status": "collapsed"}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/job/<job_id>", methods=["GET"])
def get_job(job_id: str):
job = jobs.get(job_id)
if job is None:
return jsonify({"error": "not found"}), 404
return jsonify(job)
@app.route("/jobs", methods=["GET"])
def list_jobs():
return jsonify(jobs)
@app.route("/lambdas", methods=["GET", "POST"])
def update_lambdas():
if request.method == "POST":
data = request.json
manager.set_lambdas(float(data["lambda_K"]), float(data["lambda_C"]), float(data["lambda_S"]))
return jsonify({"status": "updated"})
else:
return jsonify({
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
})
@app.route("/diffusion", methods=["GET", "POST"])
def update_diffusion():
if request.method == "POST":
manager.set_diffusion(bool(request.json.get("diffusion", False)))
return jsonify({"status": "updated"})
return jsonify({"diffusion": manager.diffusion})
@app.route("/qat", methods=["GET", "POST"])
def update_qat():
if request.method == "POST":
manager.set_qat(bool(request.json.get("qat", False)))
return jsonify({"status": "updated"})
return jsonify({"qat": manager.qat})
@app.route("/gpu", methods=["GET", "POST"])
def update_gpu():
if request.method == "POST":
manager.set_gpu(bool(request.json.get("use_gpu", False)))
return jsonify({"status": "updated"})
return jsonify({"use_gpu": manager.use_gpu})
@app.route("/infer", methods=["POST"])
def inference():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
result = manager.infer(bits)
return jsonify(result)
@app.route("/infer_long", methods=["POST"])
def inference_long():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
ctx = int(request.json.get("ctx_bits", 4096))
overlap = int(request.json.get("overlap", 256))
result = manager.infer_long(bits, ctx_bits=ctx, overlap=overlap)
return jsonify(result)
@app.route("/infer_text", methods=["POST"])
def inference_text():
text = request.json.get("text", "")
result = manager.infer_text(text)
return jsonify(result)
@app.route("/status", methods=["GET"])
def status():
return jsonify(manager.get_status())
@app.route("/model_config", methods=["GET"])
def model_config():
return jsonify(manager.get_model_config())
@app.route("/metrics", methods=["GET"])
def metrics():
return jsonify(manager.get_metrics())
@app.route("/save_checkpoint", methods=["POST"])
def save_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if manager.model is None:
return jsonify({"error": "model not initialized"}), 400
if token:
hf_login(token=token)
save_checkpoint(manager.model, repo_id=repo_id)
return jsonify({"status": "saved"})
@app.route("/download_checkpoint", methods=["POST"])
def download_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if token:
hf_login(token=token)
dest = manager.weights_path + ".gz"
ok = download_checkpoint(dest, repo_id=repo_id)
if not ok:
return jsonify({"status": "failed"}), 500
if manager.model is None:
return jsonify({"status": "downloaded", "loaded": False})
with gzip.open(dest, "rb") as f:
state = torch.load(f, map_location="cpu")
manager.model.load_state_dict(state)
manager.optimizer, manager.scheduler = configure_optimizer(
manager.model, lr=1e-3, total_steps=manager.total_steps
)
manager._apply_device()
manager._save_state()
return jsonify({"status": "downloaded", "loaded": True})
@app.route("/plot.png")
def plot_png():
fig, _ = plot_telemetry(manager.metrics)
buf = io.BytesIO()
fig.savefig(buf, format="png")
plt.close(fig)
buf.seek(0)
return send_file(buf, mimetype="image/png")
@app.route("/text_to_bits", methods=["POST"])
def text_to_bits_route():
text = request.json.get("text", "")
if len(text) > 100_000:
return jsonify({"error": "text too large"}), 413
return jsonify({"bits": text_to_bits(text)})
@app.route("/dataset", methods=["GET"])
def dataset_route():
name = request.args.get("name", "")
split = request.args.get("split", "train")
size = int(request.args.get("size", 1))
seq_len = int(request.args.get("seq_len", 64))
if size * seq_len > 1_000_000:
return jsonify({"error": "dataset too large"}), 413
if name == "wikitext2":
try:
from datasets import load_dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split=split)
lines = [t for t in ds["text"] if t.strip()][:size]
except Exception:
bits = torch.randint(0, 2, (size, seq_len), dtype=torch.long)
return jsonify({"bits": bits.tolist()})
bits_list = []
for text in lines:
b = text_to_bits(text)[:seq_len]
if len(b) < seq_len:
b.extend([0] * (seq_len - len(b)))
bits_list.append(b)
if len(bits_list) < size:
pad = size - len(bits_list)
bits_list.extend(torch.randint(0, 2, (pad, seq_len), dtype=torch.long).tolist())
return jsonify({"bits": bits_list})
return jsonify({"error": "unknown dataset"}), 400
# Dataset Management Endpoints
@app.route("/dataset/create", methods=["POST"])
def create_dataset():
"""Create and upload a new BitTransformerLM dataset."""
data = request.json or {}
hf_token = data.get("hf_token") or os.getenv("HF_TOKEN")
repo_id = data.get("repo_id", "BitTransformerLM")
source_texts = data.get("source_texts", None)
if not hf_token:
return jsonify({"error": "HF token required"}), 400
def task():
try:
dataset_url = create_bittransformerlm_dataset(
hf_token=hf_token,
repo_id=repo_id,
source_texts=source_texts
)
return {
"status": "success",
"dataset_url": dataset_url,
"repo_id": repo_id
}
except Exception as e:
return {
"status": "error",
"error": str(e)
}
job_id = _submit_job(task)
return jsonify({"job_id": job_id, "message": "Dataset creation started"})
@app.route("/dataset/builder", methods=["POST"])
def create_dataset_builder():
"""Initialize a dataset builder for custom dataset creation."""
data = request.json or {}
hf_token = data.get("hf_token") or os.getenv("HF_TOKEN")
repo_id = data.get("repo_id", "BitTransformerLM")
if not hf_token:
return jsonify({"error": "HF token required"}), 400
try:
builder = BitTransformerDatasetBuilder(hf_token, repo_id)
# Store builder configuration
builder_info = {
"repo_id": repo_id,
"config": builder.config,
"status": "ready"
}
return jsonify({
"status": "builder_created",
"builder_info": builder_info
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/dataset/generate", methods=["POST"])
def generate_dataset_samples():
"""Generate specific types of dataset samples."""
data = request.json or {}
sample_type = data.get("type", "text_to_bits") # text_to_bits, synthetic, safety, compression
count = int(data.get("count", 100))
max_len = int(data.get("max_len", 256))
texts = data.get("texts", None)
if count > 5000:
return jsonify({"error": "count too large, max 5000"}), 400
def task():
try:
# Create temporary builder (no upload)
builder = BitTransformerDatasetBuilder("dummy_token", "temp")
if sample_type == "text_to_bits":
if not texts:
texts = builder._get_default_texts()[:count]
samples = builder.generate_text_to_bits_data(texts[:count], max_len)
elif sample_type == "synthetic":
samples = builder.generate_synthetic_patterns(count, max_len)
elif sample_type == "safety":
samples = builder.generate_safety_benchmarks(count)
elif sample_type == "compression":
# Need base samples first
base_texts = builder._get_default_texts()[:50]
base_samples = builder.generate_text_to_bits_data(base_texts, max_len)
samples = builder.generate_compression_variants(base_samples)[:count]
else:
return {"error": f"Unknown sample type: {sample_type}"}
return {
"status": "success",
"samples": samples[:10], # Return first 10 for preview
"total_generated": len(samples),
"sample_type": sample_type
}
except Exception as e:
return {"error": str(e)}
job_id = _submit_job(task)
return jsonify({"job_id": job_id, "message": f"Generating {sample_type} samples"})
@app.route("/dataset/info", methods=["GET"])
def dataset_info():
"""Get information about available dataset generation options."""
return jsonify({
"sample_types": [
{
"type": "text_to_bits",
"description": "Convert text to parity-protected bit sequences",
"parameters": ["texts", "max_len"]
},
{
"type": "synthetic",
"description": "Generate synthetic bit patterns",
"parameters": ["count", "max_len"],
"patterns": ["alternating", "blocks", "fibonacci", "prime_based", "random_walk"]
},
{
"type": "safety",
"description": "Generate safety benchmark sequences",
"parameters": ["count"],
"categories": ["low_entropy", "medium_entropy", "high_entropy", "edge_cases"]
},
{
"type": "compression",
"description": "Generate compressed variants of base sequences",
"parameters": ["count", "compression_ratios"]
}
],
"default_config": {
"max_sequence_length": 512,
"total_samples": 25000,
"safety_thresholds": {
"min_negentropy": 0.1,
"max_lz_complexity": 0.9,
"min_symbiosis": 0.3
}
}
})
@app.route("/health")
def health_check():
return jsonify({"status": "ok"})
def run_mcp_server(host: str = "0.0.0.0", port: int = 7000) -> None:
app.run(host=host, port=port, debug=True)
if __name__ == "__main__":
import torch
run_mcp_server()