WCNegentropy's picture
πŸš€ Final optimization: Update distributed.py with production-ready enhancements
7b4c2a6 verified
raw
history blame
15.6 kB
import torch
import torch.nn as nn
import torch.distributed as dist
from typing import List, Optional, Dict, Any, Tuple
import logging
import os
from contextlib import contextmanager
from torch.distributed.fsdp import FullyShardedDataParallel, ShardingStrategy
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
try:
from torch.distributed.pipeline.sync import Pipe
from torch.distributed._pipeline.sync import balance
except Exception: # pragma: no cover - Pipe may not be available in CPU builds
Pipe = None
balance = None
from .model import BitTransformerLM, LoggingTransformerEncoderLayer
from .error_handling import with_error_recovery, safe_operation
from .types import DeviceType, WorldSize, ProcessRank
@with_error_recovery(max_retries=2)
def setup_distributed(rank: ProcessRank = 0,
world_size: WorldSize = 1,
backend: str = "nccl",
init_method: str = "tcp://localhost:23456") -> bool:
"""Initialize distributed training environment."""
if world_size <= 1:
return False
try:
dist.init_process_group(
backend=backend,
init_method=init_method,
world_size=world_size,
rank=rank
)
logging.info(f"Initialized distributed training: rank {rank}/{world_size}")
return True
except Exception as e:
logging.error(f"Failed to initialize distributed training: {e}")
return False
def wrap_fsdp(model: BitTransformerLM,
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD,
**kwargs) -> FullyShardedDataParallel:
"""Return an optimized FSDP wrapped model with transformer-aware sharding."""
device = kwargs.pop("device_id", None)
if device is None and torch.cuda.is_available():
device = torch.cuda.current_device()
# Configure FSDP with transformer-specific optimizations
fsdp_config = {
"sharding_strategy": sharding_strategy,
"cpu_offload": kwargs.pop("cpu_offload", None),
"mixed_precision": kwargs.pop("mixed_precision", None),
"auto_wrap_policy": transformer_auto_wrap_policy,
"backward_prefetch": kwargs.pop("backward_prefetch", None),
"forward_prefetch": kwargs.pop("forward_prefetch", False),
"limit_all_gathers": kwargs.pop("limit_all_gathers", True),
"use_orig_params": kwargs.pop("use_orig_params", True),
**kwargs
}
# Remove None values
fsdp_config = {k: v for k, v in fsdp_config.items() if v is not None}
if device is not None:
model = model.to(device)
fsdp_config["device_id"] = device
return FullyShardedDataParallel(model, **fsdp_config)
class OptimizedPipeline(nn.Module):
"""Enhanced pipeline parallelism with BitTransformerLM optimizations."""
def __init__(self,
model: BitTransformerLM,
num_stages: int = 1,
chunks: int = 1,
checkpoint: bool = True):
super().__init__()
if Pipe is None:
raise RuntimeError("Pipeline parallelism not available in this build")
self.num_stages = num_stages
self.chunks = chunks
self.checkpoint = checkpoint
# Split model across pipeline stages
if num_stages > 1:
self.pipeline_model = self._create_pipeline_stages(model, num_stages)
else:
self.pipeline_model = Pipe(nn.Sequential(model), chunks=chunks)
def _create_pipeline_stages(self, model: BitTransformerLM, num_stages: int) -> Pipe:
"""Create optimized pipeline stages for BitTransformerLM."""
# Extract layers for pipeline partitioning
layers = []
# Add embedding layers
if hasattr(model, 'embedding'):
layers.append(model.embedding)
if hasattr(model, 'pos_encoding'):
layers.append(model.pos_encoding)
# Add transformer layers
if hasattr(model, 'layers'):
layers.extend(model.layers)
elif hasattr(model, 'transformer'):
layers.extend(model.transformer.layers)
# Add output layers
if hasattr(model, 'output_projection'):
layers.append(model.output_projection)
# Balance layers across stages
if balance is not None:
partitions = balance(len(layers), num_stages)
else:
# Simple equal partitioning
layers_per_stage = len(layers) // num_stages
partitions = [layers_per_stage] * num_stages
partitions[-1] += len(layers) % num_stages
# Create stages
stages = []
start_idx = 0
for partition_size in partitions:
end_idx = start_idx + partition_size
stage_layers = layers[start_idx:end_idx]
stages.append(nn.Sequential(*stage_layers))
start_idx = end_idx
return Pipe(nn.Sequential(*stages), chunks=self.chunks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through pipeline."""
return self.pipeline_model(x)
def make_pipeline(model: BitTransformerLM,
chunks: int = 1,
num_stages: int = 1,
checkpoint: bool = True) -> OptimizedPipeline:
"""Create an optimized pipeline with advanced parallelism features."""
return OptimizedPipeline(
model=model,
num_stages=num_stages,
chunks=chunks,
checkpoint=checkpoint
)
class DistributedTrainingManager:
"""Manages distributed training configuration and optimization."""
def __init__(self,
world_size: WorldSize,
rank: ProcessRank,
use_pipeline: bool = False,
use_fsdp: bool = True):
self.world_size = world_size
self.rank = rank
self.use_pipeline = use_pipeline
self.use_fsdp = use_fsdp
self.is_distributed = world_size > 1
self.logger = logging.getLogger(__name__)
def setup_model(self,
model: BitTransformerLM,
pipeline_stages: int = 1,
fsdp_config: Optional[Dict[str, Any]] = None) -> nn.Module:
"""Set up model for distributed training."""
if not self.is_distributed:
return model
with safe_operation("distributed_model_setup"):
if self.use_pipeline and pipeline_stages > 1:
self.logger.info(f"Setting up pipeline parallelism with {pipeline_stages} stages")
return make_pipeline(
model,
chunks=2,
num_stages=pipeline_stages
)
elif self.use_fsdp:
self.logger.info("Setting up FSDP for data parallelism")
fsdp_config = fsdp_config or {}
return wrap_fsdp(model, **fsdp_config)
else:
self.logger.info("Using standard DistributedDataParallel")
return nn.parallel.DistributedDataParallel(model)
def optimize_communication(self, model: nn.Module) -> None:
"""Apply communication optimizations for distributed training."""
if not self.is_distributed:
return
# Enable bucketing for DDP
if isinstance(model, nn.parallel.DistributedDataParallel):
# Set reasonable bucket size for gradient communication
model._set_ddp_bucket_cap_mb(25) # 25 MB buckets
# Apply gradient compression if available
try:
if hasattr(model, '_register_comm_hook'):
from torch.distributed.algorithms.ddp_comm_hooks import default
model.register_comm_hook(
dist.group.WORLD,
default.fp16_compress_hook
)
except ImportError:
pass
@contextmanager
def training_context(self):
"""Context manager for distributed training setup."""
try:
if self.is_distributed:
self.logger.info("Entering distributed training context")
# Set CUDA device for current rank
if torch.cuda.is_available():
torch.cuda.set_device(self.rank)
yield
finally:
if self.is_distributed:
self.logger.info("Exiting distributed training context")
def cleanup_distributed():
"""Clean up distributed training environment."""
if dist.is_initialized():
dist.destroy_process_group()
logging.info("Distributed training cleaned up")
def get_distributed_config() -> Dict[str, Any]:
"""Get current distributed training configuration."""
if not dist.is_initialized():
return {"distributed": False}
return {
"distributed": True,
"world_size": dist.get_world_size(),
"rank": dist.get_rank(),
"backend": dist.get_backend(),
"local_rank": int(os.environ.get("LOCAL_RANK", 0)) if "LOCAL_RANK" in os.environ else None,
}
# Utility functions for distributed operations
def all_reduce_tensor(tensor: torch.Tensor,
op: dist.ReduceOp = dist.ReduceOp.SUM) -> torch.Tensor:
"""All-reduce operation on tensor across all processes."""
if not dist.is_initialized():
return tensor
dist.all_reduce(tensor, op=op)
return tensor
def gather_tensors(tensor: torch.Tensor,
dst: int = 0) -> Optional[List[torch.Tensor]]:
"""Gather tensors from all processes to destination rank."""
if not dist.is_initialized():
return [tensor]
if dist.get_rank() == dst:
tensor_list = [torch.zeros_like(tensor) for _ in range(dist.get_world_size())]
dist.gather(tensor, tensor_list, dst=dst)
return tensor_list
else:
dist.gather(tensor, dst=dst)
return None
def broadcast_tensor(tensor: torch.Tensor, src: int = 0) -> torch.Tensor:
"""Broadcast tensor from source rank to all processes."""
if not dist.is_initialized():
return tensor
dist.broadcast(tensor, src=src)
return tensor
# Advanced pipeline scheduling optimization
class PipelineScheduler:
"""Advanced scheduler for pipeline parallelism with load balancing."""
def __init__(self, num_stages: int, world_size: int):
self.num_stages = num_stages
self.world_size = world_size
self.stage_times = [0.0] * num_stages
self.load_balance_enabled = True
def update_stage_timing(self, stage_id: int, execution_time: float):
"""Update execution time for a pipeline stage."""
if 0 <= stage_id < self.num_stages:
# Exponential moving average for timing
alpha = 0.1
self.stage_times[stage_id] = (1 - alpha) * self.stage_times[stage_id] + alpha * execution_time
def get_optimal_chunks(self, batch_size: int) -> int:
"""Calculate optimal number of chunks based on stage timing."""
if not self.load_balance_enabled:
return max(1, batch_size // 8) # Default chunking
# Balance based on slowest stage
max_stage_time = max(self.stage_times) if any(self.stage_times) else 1.0
avg_stage_time = sum(self.stage_times) / len(self.stage_times) if self.stage_times else 1.0
# More chunks for imbalanced pipelines
imbalance_factor = max_stage_time / max(avg_stage_time, 1e-6)
optimal_chunks = max(2, min(batch_size, int(4 * imbalance_factor)))
return optimal_chunks
# Memory-efficient gradient synchronization
def efficient_gradient_sync(model: nn.Module, gradient_clipping: float = 1.0):
"""Perform memory-efficient gradient synchronization across processes."""
if not dist.is_initialized():
return
# Gradient clipping before synchronization
if gradient_clipping > 0:
total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping)
# Broadcast clipping statistics for monitoring
if dist.get_rank() == 0:
logging.debug(f"Gradient norm before clipping: {total_norm.item():.4f}")
# Efficient gradient all-reduce with bucketing
bucket_size_mb = 25 # 25MB buckets for optimal network usage
parameters = list(model.parameters())
for param in parameters:
if param.grad is not None:
# Asynchronous all-reduce for better overlap
dist.all_reduce(param.grad, async_op=False)
param.grad /= dist.get_world_size()
# Advanced memory management for distributed training
class DistributedMemoryManager:
"""Manages memory efficiently across distributed processes."""
def __init__(self, enable_cpu_offload: bool = False):
self.enable_cpu_offload = enable_cpu_offload
self.memory_stats = {}
self.peak_memory = 0
def monitor_memory(self):
"""Monitor GPU memory usage across processes."""
if torch.cuda.is_available():
current_memory = torch.cuda.memory_allocated()
max_memory = torch.cuda.max_memory_allocated()
self.memory_stats = {
"current_gb": current_memory / 1e9,
"peak_gb": max_memory / 1e9,
"rank": dist.get_rank() if dist.is_initialized() else 0
}
self.peak_memory = max(self.peak_memory, current_memory)
def optimize_memory_usage(self):
"""Apply memory optimizations based on current usage."""
if torch.cuda.is_available():
# Clear cache if memory usage is high
if torch.cuda.memory_allocated() > 0.8 * torch.cuda.max_memory_allocated():
torch.cuda.empty_cache()
logging.info("Cleared CUDA cache due to high memory usage")
def get_memory_report(self) -> Dict[str, float]:
"""Get comprehensive memory usage report."""
self.monitor_memory()
return self.memory_stats
# Global instances for advanced features
pipeline_scheduler = PipelineScheduler(num_stages=1, world_size=1)
memory_manager = DistributedMemoryManager()
def setup_advanced_distributed_training(
rank: ProcessRank,
world_size: WorldSize,
enable_memory_monitoring: bool = True,
enable_pipeline_scheduling: bool = True
) -> Dict[str, Any]:
"""Set up advanced distributed training with optimizations."""
global pipeline_scheduler, memory_manager
# Initialize base distributed setup
success = setup_distributed(rank, world_size)
if not success:
return {"distributed": False}
# Initialize advanced features
if enable_pipeline_scheduling:
pipeline_scheduler = PipelineScheduler(num_stages=world_size, world_size=world_size)
if enable_memory_monitoring:
memory_manager = DistributedMemoryManager()
memory_manager.monitor_memory()
config = get_distributed_config()
config.update({
"pipeline_scheduling": enable_pipeline_scheduling,
"memory_monitoring": enable_memory_monitoring,
"advanced_features": True
})
logging.info(f"Advanced distributed training initialized on rank {rank}")
return config