π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- integration_schedule.py +379 -0
integration_schedule.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import math
|
| 4 |
+
from itertools import cycle
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from bit_transformer import (
|
| 10 |
+
BitTransformerLM,
|
| 11 |
+
text_to_bits,
|
| 12 |
+
quantize_dynamic,
|
| 13 |
+
prepare_qat_fx,
|
| 14 |
+
convert_qat_fx,
|
| 15 |
+
hil_safe_inference,
|
| 16 |
+
collapse_submodel,
|
| 17 |
+
diffusion_inference,
|
| 18 |
+
TelemetrySynthesizer,
|
| 19 |
+
save_distilled_model,
|
| 20 |
+
)
|
| 21 |
+
from bit_transformer.training import train_loop as train
|
| 22 |
+
from bit_transformer.optimization import configure_optimizer, adjust_learning_rate
|
| 23 |
+
from bit_transformer.utils import save_model, load_model, set_dropout
|
| 24 |
+
from bit_transformer.torch_utils import cpu_autocast
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def lines_to_tensor(lines, max_len):
|
| 28 |
+
seqs = []
|
| 29 |
+
for text in lines:
|
| 30 |
+
bits = text_to_bits(text)[:max_len]
|
| 31 |
+
if len(bits) < max_len:
|
| 32 |
+
bits.extend([0] * (max_len - len(bits)))
|
| 33 |
+
seqs.append(bits)
|
| 34 |
+
return torch.tensor(seqs, dtype=torch.long)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_wikitext(dataset_size=128, max_len=64):
|
| 38 |
+
try:
|
| 39 |
+
from datasets import load_dataset
|
| 40 |
+
|
| 41 |
+
ds = load_dataset("wikitext", "wikitext-2-raw-v1")
|
| 42 |
+
train_lines = [t for t in ds["train"]["text"] if t.strip()][:dataset_size]
|
| 43 |
+
valid_split = max(1, dataset_size // 4)
|
| 44 |
+
valid_lines = [t for t in ds["validation"]["text"] if t.strip()][:valid_split]
|
| 45 |
+
train = lines_to_tensor(train_lines, max_len)
|
| 46 |
+
valid = lines_to_tensor(valid_lines, max_len)
|
| 47 |
+
return train, valid, train_lines
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print("Dataset load failed, using random bits", e)
|
| 50 |
+
train = torch.randint(0, 2, (dataset_size, max_len), dtype=torch.long)
|
| 51 |
+
valid = torch.randint(0, 2, (max_len, max_len), dtype=torch.long)
|
| 52 |
+
return train, valid, ["" for _ in range(len(train))]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _warmup(
|
| 56 |
+
model: BitTransformerLM,
|
| 57 |
+
data: torch.Tensor,
|
| 58 |
+
steps: int = 5,
|
| 59 |
+
freeze_old: bool = False,
|
| 60 |
+
old_layers: int = 0,
|
| 61 |
+
*,
|
| 62 |
+
diffusion: bool = False,
|
| 63 |
+
curriculum: bool = False,
|
| 64 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 65 |
+
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
| 66 |
+
) -> None:
|
| 67 |
+
"""Run a short warm-up loop after expansion."""
|
| 68 |
+
model.train()
|
| 69 |
+
set_dropout(model, 0.1)
|
| 70 |
+
if freeze_old:
|
| 71 |
+
for idx, layer in enumerate(model.layers):
|
| 72 |
+
if idx < old_layers:
|
| 73 |
+
for p in layer.parameters():
|
| 74 |
+
p.requires_grad_(False)
|
| 75 |
+
if optimizer is None or scheduler is None:
|
| 76 |
+
optimizer, scheduler = configure_optimizer(model, lr=1e-3, total_steps=steps)
|
| 77 |
+
it = iter(data.split(8))
|
| 78 |
+
for idx in range(steps):
|
| 79 |
+
try:
|
| 80 |
+
batch = next(it)
|
| 81 |
+
except StopIteration:
|
| 82 |
+
it = iter(data.split(8))
|
| 83 |
+
batch = next(it)
|
| 84 |
+
if diffusion:
|
| 85 |
+
p = 0.5 * (1 - idx / max(1, steps - 1)) if curriculum else 0.5
|
| 86 |
+
noise = (torch.rand_like(batch.float()) < p).long()
|
| 87 |
+
noisy = batch ^ noise
|
| 88 |
+
logits, _ = model(noisy, causal=False)
|
| 89 |
+
pred = logits.reshape(-1, 2)
|
| 90 |
+
target = batch.reshape(-1)
|
| 91 |
+
else:
|
| 92 |
+
logits, _ = model(batch)
|
| 93 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 94 |
+
target = batch[:, 1:].reshape(-1)
|
| 95 |
+
loss = F.cross_entropy(pred, target)
|
| 96 |
+
loss.backward()
|
| 97 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 98 |
+
optimizer.step()
|
| 99 |
+
scheduler.step()
|
| 100 |
+
optimizer.zero_grad()
|
| 101 |
+
for p in model.parameters():
|
| 102 |
+
p.requires_grad_(True)
|
| 103 |
+
model.eval()
|
| 104 |
+
set_dropout(model, 0.0)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def integration_schedule(
|
| 108 |
+
steps: int = 10,
|
| 109 |
+
max_len: int = 64,
|
| 110 |
+
dataset_size: int = 128,
|
| 111 |
+
*,
|
| 112 |
+
weights_path: str = "weights/model.pt.gz",
|
| 113 |
+
plateau_steps: int = 0,
|
| 114 |
+
collapsed_path: str | None = None,
|
| 115 |
+
epochs_per_step: int = 2,
|
| 116 |
+
extra_steps: int = 3,
|
| 117 |
+
collapse: bool = True,
|
| 118 |
+
diffusion: bool = False,
|
| 119 |
+
noise_schedule: str = "linear",
|
| 120 |
+
diffusion_steps: int = 8,
|
| 121 |
+
diffusion_curriculum: bool = False,
|
| 122 |
+
use_checkpoint: bool = True,
|
| 123 |
+
reversible: bool = True,
|
| 124 |
+
improve_thresh: float = 0.01,
|
| 125 |
+
qat: bool = False,
|
| 126 |
+
):
|
| 127 |
+
start = time.time()
|
| 128 |
+
train_bits, valid_bits, train_lines = load_wikitext(dataset_size, max_len)
|
| 129 |
+
if os.path.exists(weights_path):
|
| 130 |
+
try:
|
| 131 |
+
model = load_model(weights_path)
|
| 132 |
+
print(f"Loaded model from {weights_path}")
|
| 133 |
+
except Exception as e:
|
| 134 |
+
print("Failed to load weights, initializing new model", e)
|
| 135 |
+
model = BitTransformerLM(
|
| 136 |
+
d_model=32,
|
| 137 |
+
nhead=4,
|
| 138 |
+
num_layers=1,
|
| 139 |
+
dim_feedforward=64,
|
| 140 |
+
max_seq_len=max_len,
|
| 141 |
+
use_act=True,
|
| 142 |
+
act_threshold=0.7,
|
| 143 |
+
reversible=reversible,
|
| 144 |
+
chunk_size=max_len,
|
| 145 |
+
use_autocast=True,
|
| 146 |
+
use_checkpoint=use_checkpoint,
|
| 147 |
+
)
|
| 148 |
+
else:
|
| 149 |
+
model = BitTransformerLM(
|
| 150 |
+
d_model=32,
|
| 151 |
+
nhead=4,
|
| 152 |
+
num_layers=1,
|
| 153 |
+
dim_feedforward=64,
|
| 154 |
+
max_seq_len=max_len,
|
| 155 |
+
use_act=True,
|
| 156 |
+
act_threshold=0.7,
|
| 157 |
+
reversible=reversible,
|
| 158 |
+
chunk_size=max_len,
|
| 159 |
+
use_autocast=True,
|
| 160 |
+
use_checkpoint=use_checkpoint,
|
| 161 |
+
)
|
| 162 |
+
if qat:
|
| 163 |
+
model = prepare_qat_fx(model)
|
| 164 |
+
results = []
|
| 165 |
+
scale_cycle = cycle(["layers", "width", "context"])
|
| 166 |
+
base_lr = 1e-3
|
| 167 |
+
prev_val_loss: Optional[float] = None
|
| 168 |
+
for step in range(steps):
|
| 169 |
+
model.train()
|
| 170 |
+
set_dropout(model, 0.1)
|
| 171 |
+
opt, sched = configure_optimizer(
|
| 172 |
+
model, lr=base_lr, total_steps=epochs_per_step
|
| 173 |
+
)
|
| 174 |
+
train(
|
| 175 |
+
model,
|
| 176 |
+
train_bits,
|
| 177 |
+
epochs=epochs_per_step,
|
| 178 |
+
extra_steps=extra_steps,
|
| 179 |
+
compress_prob=0.0 if diffusion else 1.0,
|
| 180 |
+
log=True,
|
| 181 |
+
diffusion=diffusion,
|
| 182 |
+
diffusion_curriculum=diffusion_curriculum,
|
| 183 |
+
optimizer=opt,
|
| 184 |
+
scheduler=sched,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
model.eval()
|
| 188 |
+
set_dropout(model, 0.0)
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
logits, telemetry = model(valid_bits, causal=not diffusion)
|
| 191 |
+
if diffusion:
|
| 192 |
+
pred = logits.reshape(-1, 2)
|
| 193 |
+
target = valid_bits.reshape(-1)
|
| 194 |
+
else:
|
| 195 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 196 |
+
target = valid_bits[:, 1:].reshape(-1)
|
| 197 |
+
val_loss = F.cross_entropy(pred, target).item()
|
| 198 |
+
k = telemetry["negentropy_logits"].mean().item()
|
| 199 |
+
c = telemetry["lz_complexity_logits"].mean().item()
|
| 200 |
+
s = telemetry["symbiosis_score"].mean().item()
|
| 201 |
+
print(f"Step {step} validation loss: {val_loss:.4f} K={k:.3f} C={c:.3f} S={s:.3f}")
|
| 202 |
+
results.append((step, val_loss, k, c, s))
|
| 203 |
+
|
| 204 |
+
if prev_val_loss is not None and prev_val_loss - val_loss < improve_thresh:
|
| 205 |
+
strategy = next(scale_cycle)
|
| 206 |
+
base_lr = adjust_learning_rate(opt, 1 / math.sqrt(2))
|
| 207 |
+
if strategy == "layers":
|
| 208 |
+
old_layers = model.num_layers
|
| 209 |
+
model = model.double_layers()
|
| 210 |
+
warm_opt, warm_sched = configure_optimizer(
|
| 211 |
+
model, lr=base_lr, total_steps=100
|
| 212 |
+
)
|
| 213 |
+
_warmup(
|
| 214 |
+
model,
|
| 215 |
+
train_bits,
|
| 216 |
+
steps=100,
|
| 217 |
+
freeze_old=True,
|
| 218 |
+
old_layers=old_layers,
|
| 219 |
+
diffusion=diffusion,
|
| 220 |
+
curriculum=diffusion_curriculum,
|
| 221 |
+
optimizer=warm_opt,
|
| 222 |
+
scheduler=warm_sched,
|
| 223 |
+
)
|
| 224 |
+
elif strategy == "width":
|
| 225 |
+
model = model.double_width()
|
| 226 |
+
warm_opt, warm_sched = configure_optimizer(
|
| 227 |
+
model, lr=base_lr, total_steps=100
|
| 228 |
+
)
|
| 229 |
+
_warmup(
|
| 230 |
+
model,
|
| 231 |
+
train_bits,
|
| 232 |
+
steps=100,
|
| 233 |
+
diffusion=diffusion,
|
| 234 |
+
curriculum=diffusion_curriculum,
|
| 235 |
+
optimizer=warm_opt,
|
| 236 |
+
scheduler=warm_sched,
|
| 237 |
+
)
|
| 238 |
+
else:
|
| 239 |
+
max_len *= 2
|
| 240 |
+
train_bits, valid_bits, train_lines = load_wikitext(
|
| 241 |
+
dataset_size, max_len
|
| 242 |
+
)
|
| 243 |
+
model = model.double_length()
|
| 244 |
+
warm_opt, warm_sched = configure_optimizer(
|
| 245 |
+
model, lr=base_lr, total_steps=100
|
| 246 |
+
)
|
| 247 |
+
_warmup(
|
| 248 |
+
model,
|
| 249 |
+
train_bits,
|
| 250 |
+
steps=100,
|
| 251 |
+
diffusion=diffusion,
|
| 252 |
+
curriculum=diffusion_curriculum,
|
| 253 |
+
optimizer=warm_opt,
|
| 254 |
+
scheduler=warm_sched,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
prev_val_loss = val_loss
|
| 258 |
+
if time.time() - start > 8 * 60:
|
| 259 |
+
print("Time limit reached")
|
| 260 |
+
break
|
| 261 |
+
|
| 262 |
+
# optional plateau phase at final size
|
| 263 |
+
for p in range(plateau_steps):
|
| 264 |
+
model.train()
|
| 265 |
+
set_dropout(model, 0.1)
|
| 266 |
+
train(
|
| 267 |
+
model,
|
| 268 |
+
train_bits,
|
| 269 |
+
epochs=epochs_per_step,
|
| 270 |
+
extra_steps=extra_steps,
|
| 271 |
+
compress_prob=0.0 if diffusion else 1.0,
|
| 272 |
+
log=True,
|
| 273 |
+
diffusion=diffusion,
|
| 274 |
+
diffusion_curriculum=diffusion_curriculum,
|
| 275 |
+
)
|
| 276 |
+
model.eval()
|
| 277 |
+
set_dropout(model, 0.0)
|
| 278 |
+
with torch.no_grad():
|
| 279 |
+
logits, telemetry = model(valid_bits, causal=not diffusion)
|
| 280 |
+
if diffusion:
|
| 281 |
+
pred = logits.reshape(-1, 2)
|
| 282 |
+
target = valid_bits.reshape(-1)
|
| 283 |
+
else:
|
| 284 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 285 |
+
target = valid_bits[:, 1:].reshape(-1)
|
| 286 |
+
val_loss = F.cross_entropy(pred, target).item()
|
| 287 |
+
k = telemetry["negentropy_logits"].mean().item()
|
| 288 |
+
c = telemetry["lz_complexity_logits"].mean().item()
|
| 289 |
+
s = telemetry["symbiosis_score"].mean().item()
|
| 290 |
+
idx = steps + p
|
| 291 |
+
print(
|
| 292 |
+
f"Plateau {p} validation loss: {val_loss:.4f} K={k:.3f} C={c:.3f} S={s:.3f}"
|
| 293 |
+
)
|
| 294 |
+
results.append((idx, val_loss, k, c, s))
|
| 295 |
+
if time.time() - start > 8 * 60:
|
| 296 |
+
print("Time limit reached")
|
| 297 |
+
break
|
| 298 |
+
|
| 299 |
+
# final validation after last step
|
| 300 |
+
model.eval()
|
| 301 |
+
set_dropout(model, 0.0)
|
| 302 |
+
with torch.no_grad():
|
| 303 |
+
logits, telemetry = model(valid_bits, causal=not diffusion)
|
| 304 |
+
if diffusion:
|
| 305 |
+
pred = logits.reshape(-1, 2)
|
| 306 |
+
target = valid_bits.reshape(-1)
|
| 307 |
+
else:
|
| 308 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 309 |
+
target = valid_bits[:, 1:].reshape(-1)
|
| 310 |
+
val_loss = F.cross_entropy(pred, target).item()
|
| 311 |
+
k = telemetry["negentropy_logits"].mean().item()
|
| 312 |
+
c = telemetry["lz_complexity_logits"].mean().item()
|
| 313 |
+
s = telemetry["symbiosis_score"].mean().item()
|
| 314 |
+
|
| 315 |
+
print(f"Final validation loss: {val_loss:.4f} K={k:.3f} C={c:.3f} S={s:.3f}")
|
| 316 |
+
results.append((steps + plateau_steps, val_loss, k, c, s))
|
| 317 |
+
|
| 318 |
+
# persist final model weights for future runs
|
| 319 |
+
save_model(model, weights_path)
|
| 320 |
+
|
| 321 |
+
input_bits = valid_bits[:1]
|
| 322 |
+
if qat:
|
| 323 |
+
qmodel = convert_qat_fx(model)
|
| 324 |
+
else:
|
| 325 |
+
with cpu_autocast():
|
| 326 |
+
model(input_bits)
|
| 327 |
+
qmodel = quantize_dynamic(model)
|
| 328 |
+
qmodel.eval()
|
| 329 |
+
try:
|
| 330 |
+
hil_safe_inference(
|
| 331 |
+
qmodel,
|
| 332 |
+
input_bits,
|
| 333 |
+
c_floor=0.3,
|
| 334 |
+
s_floor=0.5,
|
| 335 |
+
causal=not diffusion,
|
| 336 |
+
strict=not diffusion,
|
| 337 |
+
)
|
| 338 |
+
except RuntimeError as e:
|
| 339 |
+
print("Safety gate triggered", e)
|
| 340 |
+
collapsed = None
|
| 341 |
+
if collapse:
|
| 342 |
+
synth = TelemetrySynthesizer(n_clusters=8)
|
| 343 |
+
reps = synth.cluster_sequences(model, train_bits[:64])
|
| 344 |
+
floors = {"negentropy": 0.3, "lz_complexity": 0.35, "symbiosis_score": 0.5}
|
| 345 |
+
collapsed, metrics = collapse_submodel(
|
| 346 |
+
reps,
|
| 347 |
+
target_params=dict(
|
| 348 |
+
d_model=16,
|
| 349 |
+
nhead=4,
|
| 350 |
+
num_layers=1,
|
| 351 |
+
dim_feedforward=32,
|
| 352 |
+
max_seq_len=max_len,
|
| 353 |
+
),
|
| 354 |
+
floors=floors,
|
| 355 |
+
)
|
| 356 |
+
collapsed.eval()
|
| 357 |
+
with torch.no_grad():
|
| 358 |
+
logits, _ = collapsed(valid_bits)
|
| 359 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 360 |
+
target = valid_bits[:, 1:].reshape(-1)
|
| 361 |
+
c_loss = F.cross_entropy(pred, target).item()
|
| 362 |
+
print("Collapsed model validation loss:", c_loss)
|
| 363 |
+
if collapsed_path is not None:
|
| 364 |
+
save_distilled_model(
|
| 365 |
+
collapsed,
|
| 366 |
+
collapsed_path,
|
| 367 |
+
{**metrics, "val_loss": c_loss},
|
| 368 |
+
floors=floors,
|
| 369 |
+
)
|
| 370 |
+
if diffusion:
|
| 371 |
+
sample = diffusion_inference(
|
| 372 |
+
model, length=max_len, steps=diffusion_steps, schedule=noise_schedule
|
| 373 |
+
)
|
| 374 |
+
print("Diffusion sample:", sample[0].tolist())
|
| 375 |
+
return results, collapsed
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
if __name__ == "__main__":
|
| 379 |
+
integration_schedule()
|