π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- progressive_scaleup.py +216 -0
progressive_scaleup.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Legacy progressive scale-up demo.
|
| 2 |
+
|
| 3 |
+
This script is retained for historical reference but has been superseded by
|
| 4 |
+
``integration_schedule.py`` which provides a more flexible scaling workflow.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import argparse
|
| 8 |
+
import warnings
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from bit_transformer import (
|
| 12 |
+
BitTransformerLM,
|
| 13 |
+
configure_optimizer,
|
| 14 |
+
expand_model,
|
| 15 |
+
text_to_bits,
|
| 16 |
+
)
|
| 17 |
+
from bit_transformer.training import train_loop as basic_train
|
| 18 |
+
|
| 19 |
+
warnings.warn(
|
| 20 |
+
"progressive_scaleup.py is deprecated; use integration_schedule.py instead.",
|
| 21 |
+
DeprecationWarning,
|
| 22 |
+
stacklevel=2,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def progressive_scale_up(
|
| 27 |
+
eps: float = 0.65,
|
| 28 |
+
steps: int = 2,
|
| 29 |
+
width_mult: float = 1.0,
|
| 30 |
+
forward_kwargs: dict | None = None,
|
| 31 |
+
) -> None:
|
| 32 |
+
"""Demonstrate automatic scaling of the model on random data."""
|
| 33 |
+
params = dict(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=16)
|
| 34 |
+
model = BitTransformerLM(**params)
|
| 35 |
+
steps_per_epoch = 64 // 8
|
| 36 |
+
optimizer, scheduler = configure_optimizer(
|
| 37 |
+
model, lr=1e-3, total_steps=steps * steps_per_epoch
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
train = torch.randint(0, 2, (64, params["max_seq_len"]), dtype=torch.long)
|
| 41 |
+
valid = torch.randint(0, 2, (16, params["max_seq_len"]), dtype=torch.long)
|
| 42 |
+
|
| 43 |
+
for step in range(steps):
|
| 44 |
+
# one epoch over train
|
| 45 |
+
basic_train(
|
| 46 |
+
model,
|
| 47 |
+
train,
|
| 48 |
+
epochs=1,
|
| 49 |
+
compress_prob=0.5,
|
| 50 |
+
log=False,
|
| 51 |
+
forward_kwargs=forward_kwargs,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
logits, _ = model(valid, **(forward_kwargs or {}))
|
| 56 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 57 |
+
target = valid[:, 1:].reshape(-1)
|
| 58 |
+
val_loss = F.cross_entropy(pred, target).item()
|
| 59 |
+
print(f"Step {step} validation loss: {val_loss:.4f}")
|
| 60 |
+
if val_loss < eps:
|
| 61 |
+
params["num_layers"] *= 2
|
| 62 |
+
params["d_model"] = int(params["d_model"] * width_mult)
|
| 63 |
+
params["dim_feedforward"] = int(params["dim_feedforward"] * width_mult)
|
| 64 |
+
model = expand_model(model, params)
|
| 65 |
+
optimizer, scheduler = configure_optimizer(
|
| 66 |
+
model, lr=1e-3, total_steps=steps * steps_per_epoch
|
| 67 |
+
)
|
| 68 |
+
print(
|
| 69 |
+
"Scaled model to", params["num_layers"], "layers and width", params["d_model"]
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def progressive_scale_up_text(
|
| 74 |
+
improve_thresh: float = 0.01,
|
| 75 |
+
steps: int = 2,
|
| 76 |
+
width_mult: float = 2.0,
|
| 77 |
+
max_len: int = 64,
|
| 78 |
+
dataset_size: int = 512,
|
| 79 |
+
forward_kwargs: dict | None = None,
|
| 80 |
+
) -> None:
|
| 81 |
+
"""Scale up using WikiText2 lines converted to bits.
|
| 82 |
+
|
| 83 |
+
Parameters
|
| 84 |
+
----------
|
| 85 |
+
improve_thresh: float
|
| 86 |
+
Relative validation loss improvement required to avoid scaling.
|
| 87 |
+
If improvement is <= this threshold, model size is increased.
|
| 88 |
+
steps: int
|
| 89 |
+
Number of training steps.
|
| 90 |
+
width_mult: float
|
| 91 |
+
Multiplier applied when increasing model width.
|
| 92 |
+
max_len: int
|
| 93 |
+
Initial sequence length.
|
| 94 |
+
dataset_size: int
|
| 95 |
+
Number of training lines to load from WikiText2.
|
| 96 |
+
forward_kwargs: dict | None
|
| 97 |
+
Extra keyword arguments for the forward pass.
|
| 98 |
+
"""
|
| 99 |
+
from datasets import load_dataset
|
| 100 |
+
|
| 101 |
+
ds = load_dataset("wikitext", "wikitext-2-raw-v1")
|
| 102 |
+
train_iter = ds["train"]["text"]
|
| 103 |
+
valid_iter = ds["validation"]["text"]
|
| 104 |
+
|
| 105 |
+
train_lines = []
|
| 106 |
+
for line in train_iter:
|
| 107 |
+
train_lines.append(line)
|
| 108 |
+
if len(train_lines) >= dataset_size:
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
valid_lines = []
|
| 112 |
+
for line in valid_iter:
|
| 113 |
+
valid_lines.append(line)
|
| 114 |
+
if len(valid_lines) >= dataset_size // 4:
|
| 115 |
+
break
|
| 116 |
+
|
| 117 |
+
def lines_to_tensor(lines: list[str], length: int) -> torch.Tensor:
|
| 118 |
+
seqs = []
|
| 119 |
+
for text in lines:
|
| 120 |
+
bits = text_to_bits(text)[:length]
|
| 121 |
+
if len(bits) < length:
|
| 122 |
+
bits.extend([0] * (length - len(bits)))
|
| 123 |
+
seqs.append(bits)
|
| 124 |
+
return torch.tensor(seqs, dtype=torch.long)
|
| 125 |
+
|
| 126 |
+
train = lines_to_tensor(train_lines, max_len)
|
| 127 |
+
valid = lines_to_tensor(valid_lines, max_len)
|
| 128 |
+
|
| 129 |
+
params = dict(
|
| 130 |
+
d_model=32,
|
| 131 |
+
nhead=4,
|
| 132 |
+
num_layers=1,
|
| 133 |
+
dim_feedforward=64,
|
| 134 |
+
max_seq_len=max_len,
|
| 135 |
+
)
|
| 136 |
+
model = BitTransformerLM(**params)
|
| 137 |
+
steps_per_epoch = len(train) // 8
|
| 138 |
+
optimizer, scheduler = configure_optimizer(
|
| 139 |
+
model, lr=1e-3, total_steps=steps * max(1, steps_per_epoch)
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
prev_loss: float | None = None
|
| 143 |
+
scale_length = True
|
| 144 |
+
|
| 145 |
+
for step in range(steps):
|
| 146 |
+
basic_train(
|
| 147 |
+
model,
|
| 148 |
+
train,
|
| 149 |
+
epochs=1,
|
| 150 |
+
compress_prob=0.5,
|
| 151 |
+
log=False,
|
| 152 |
+
forward_kwargs=forward_kwargs,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
logits, _ = model(valid, **(forward_kwargs or {}))
|
| 157 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 158 |
+
target = valid[:, 1:].reshape(-1)
|
| 159 |
+
val_loss = F.cross_entropy(pred, target).item()
|
| 160 |
+
print(f"Step {step} validation loss: {val_loss:.4f}")
|
| 161 |
+
if prev_loss is not None:
|
| 162 |
+
improvement = (prev_loss - val_loss) / max(prev_loss, 1e-8)
|
| 163 |
+
if improvement <= improve_thresh:
|
| 164 |
+
if scale_length:
|
| 165 |
+
params["max_seq_len"] *= 2
|
| 166 |
+
train = lines_to_tensor(train_lines, params["max_seq_len"])
|
| 167 |
+
valid = lines_to_tensor(valid_lines, params["max_seq_len"])
|
| 168 |
+
model = model.double_length()
|
| 169 |
+
steps_per_epoch = len(train) // 8
|
| 170 |
+
scale_type = "length"
|
| 171 |
+
else:
|
| 172 |
+
params["d_model"] = int(params["d_model"] * width_mult)
|
| 173 |
+
params["dim_feedforward"] = int(params["dim_feedforward"] * width_mult)
|
| 174 |
+
model = expand_model(model, params)
|
| 175 |
+
scale_type = "width"
|
| 176 |
+
optimizer, scheduler = configure_optimizer(
|
| 177 |
+
model, lr=1e-3, total_steps=steps * max(1, steps_per_epoch)
|
| 178 |
+
)
|
| 179 |
+
scale_length = not scale_length
|
| 180 |
+
param_count = sum(p.numel() for p in model.parameters())
|
| 181 |
+
print(
|
| 182 |
+
f"Scaled {scale_type}; seq_len={params['max_seq_len']} width={params['d_model']} params={param_count}"
|
| 183 |
+
)
|
| 184 |
+
prev_loss = val_loss
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
if __name__ == "__main__":
|
| 188 |
+
parser = argparse.ArgumentParser(description="Progressively scale model length and width")
|
| 189 |
+
parser.add_argument("--steps", type=int, default=2, help="number of training steps")
|
| 190 |
+
parser.add_argument(
|
| 191 |
+
"--improve-thresh",
|
| 192 |
+
type=float,
|
| 193 |
+
default=0.01,
|
| 194 |
+
help="relative loss improvement required to avoid scaling",
|
| 195 |
+
)
|
| 196 |
+
parser.add_argument(
|
| 197 |
+
"--width-mult", type=float, default=2.0, help="width multiplier when scaling"
|
| 198 |
+
)
|
| 199 |
+
parser.add_argument("--causal", action="store_true", help="use causal attention during training")
|
| 200 |
+
parser.add_argument("--wikitext", action="store_true", help="use WikiText2 dataset")
|
| 201 |
+
args = parser.parse_args()
|
| 202 |
+
if args.wikitext:
|
| 203 |
+
progressive_scale_up_text(
|
| 204 |
+
improve_thresh=args.improve_thresh,
|
| 205 |
+
steps=args.steps,
|
| 206 |
+
width_mult=args.width_mult,
|
| 207 |
+
forward_kwargs={"causal": args.causal} if args.causal else None,
|
| 208 |
+
)
|
| 209 |
+
else:
|
| 210 |
+
progressive_scale_up(
|
| 211 |
+
eps=args.improve_thresh,
|
| 212 |
+
steps=args.steps,
|
| 213 |
+
width_mult=args.width_mult,
|
| 214 |
+
forward_kwargs={"causal": args.causal} if args.causal else None,
|
| 215 |
+
)
|
| 216 |
+
|