🚀 Final optimization: Update types.py with production-ready enhancements
Browse files- bit_transformer/types.py +117 -0
bit_transformer/types.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Type definitions and type aliases for BitTransformerLM.
|
3 |
+
|
4 |
+
Provides standardized type hints and common type aliases used throughout the codebase.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from __future__ import annotations
|
8 |
+
from typing import Union, List, Dict, Tuple, Optional, Any, Callable, Protocol
|
9 |
+
from pathlib import Path
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
# Common tensor types
|
14 |
+
TensorLike = Union[torch.Tensor, np.ndarray, List[float], List[int]]
|
15 |
+
DeviceType = Union[str, torch.device]
|
16 |
+
DtypeType = Union[torch.dtype, type, str]
|
17 |
+
|
18 |
+
# Bit sequence types
|
19 |
+
BitSequence = List[int] # List of 0s and 1s
|
20 |
+
BitTensor = torch.Tensor # Tensor containing 0s and 1s
|
21 |
+
BitBatch = Union[List[BitSequence], torch.Tensor]
|
22 |
+
|
23 |
+
# Model types
|
24 |
+
ModelOutput = Union[torch.Tensor, Tuple[torch.Tensor, ...]]
|
25 |
+
TelemetryDict = Dict[str, Union[float, List[float], torch.Tensor]]
|
26 |
+
SafetyMetrics = Dict[str, float]
|
27 |
+
|
28 |
+
# File and path types
|
29 |
+
PathLike = Union[str, Path]
|
30 |
+
OptionalPath = Optional[PathLike]
|
31 |
+
|
32 |
+
# Training types
|
33 |
+
LossValue = Union[float, torch.Tensor]
|
34 |
+
OptimizerState = Dict[str, Any]
|
35 |
+
SchedulerState = Dict[str, Any]
|
36 |
+
|
37 |
+
# Configuration types
|
38 |
+
ModelConfig = Dict[str, Any]
|
39 |
+
TrainingConfig = Dict[str, Any]
|
40 |
+
DatasetConfig = Dict[str, Any]
|
41 |
+
|
42 |
+
# HuggingFace types
|
43 |
+
HFRepoId = str
|
44 |
+
HFToken = Optional[str]
|
45 |
+
|
46 |
+
# Function type protocols
|
47 |
+
class ModelForward(Protocol):
|
48 |
+
"""Protocol for model forward functions."""
|
49 |
+
def __call__(self,
|
50 |
+
inputs: BitTensor,
|
51 |
+
attention_mask: Optional[torch.Tensor] = None,
|
52 |
+
**kwargs) -> ModelOutput: ...
|
53 |
+
|
54 |
+
class LossFunction(Protocol):
|
55 |
+
"""Protocol for loss functions."""
|
56 |
+
def __call__(self,
|
57 |
+
predictions: torch.Tensor,
|
58 |
+
targets: torch.Tensor) -> LossValue: ...
|
59 |
+
|
60 |
+
class MetricFunction(Protocol):
|
61 |
+
"""Protocol for metric computation functions."""
|
62 |
+
def __call__(self,
|
63 |
+
predictions: torch.Tensor,
|
64 |
+
targets: torch.Tensor) -> float: ...
|
65 |
+
|
66 |
+
# Compression types
|
67 |
+
CompressedData = torch.Tensor
|
68 |
+
CompressionRatio = float
|
69 |
+
|
70 |
+
# Safety and telemetry types
|
71 |
+
NegentropyScore = float # K metric: 0 (random) to 1 (ordered)
|
72 |
+
ComplexityScore = float # C metric: LZ complexity proxy
|
73 |
+
SymbiosisScore = float # S metric: KL divergence alignment
|
74 |
+
|
75 |
+
SafetyThresholds = Dict[str, float]
|
76 |
+
TelemetryCallback = Callable[[TelemetryDict], None]
|
77 |
+
|
78 |
+
# Distributed training types
|
79 |
+
WorldSize = int
|
80 |
+
ProcessRank = int
|
81 |
+
DistributedConfig = Dict[str, Any]
|
82 |
+
|
83 |
+
# Quantization types
|
84 |
+
QuantizationConfig = Dict[str, Any]
|
85 |
+
QuantizedModel = torch.nn.Module
|
86 |
+
|
87 |
+
# Common type aliases for cleaner signatures
|
88 |
+
BatchSize = int
|
89 |
+
SequenceLength = int
|
90 |
+
VocabSize = int
|
91 |
+
HiddenSize = int
|
92 |
+
NumHeads = int
|
93 |
+
NumLayers = int
|
94 |
+
|
95 |
+
# Attention types
|
96 |
+
AttentionWeights = torch.Tensor
|
97 |
+
AttentionMask = Optional[torch.Tensor]
|
98 |
+
ChunkSize = Optional[int]
|
99 |
+
|
100 |
+
# Generation types
|
101 |
+
GenerationConfig = Dict[str, Any]
|
102 |
+
GeneratedSequence = BitSequence
|
103 |
+
GenerationCallback = Callable[[GeneratedSequence], None]
|
104 |
+
|
105 |
+
# Diffusion types
|
106 |
+
NoiseSchedule = str # 'linear', 'cosine', 'exponential'
|
107 |
+
DiffusionSteps = int
|
108 |
+
DiffusionConfig = Dict[str, Any]
|
109 |
+
|
110 |
+
# Error handling types
|
111 |
+
ErrorHandler = Callable[[Exception], None]
|
112 |
+
RecoveryStrategy = Callable[[], Any]
|
113 |
+
|
114 |
+
# Logging types
|
115 |
+
LogLevel = str # 'DEBUG', 'INFO', 'WARNING', 'ERROR'
|
116 |
+
LogMessage = str
|
117 |
+
Logger = Any # To avoid circular import with logging module
|