🚀 Final optimization: Update types.py with production-ready enhancements
Browse files- bit_transformer/types.py +117 -0
bit_transformer/types.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Type definitions and type aliases for BitTransformerLM.
|
| 3 |
+
|
| 4 |
+
Provides standardized type hints and common type aliases used throughout the codebase.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from __future__ import annotations
|
| 8 |
+
from typing import Union, List, Dict, Tuple, Optional, Any, Callable, Protocol
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import torch
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
# Common tensor types
|
| 14 |
+
TensorLike = Union[torch.Tensor, np.ndarray, List[float], List[int]]
|
| 15 |
+
DeviceType = Union[str, torch.device]
|
| 16 |
+
DtypeType = Union[torch.dtype, type, str]
|
| 17 |
+
|
| 18 |
+
# Bit sequence types
|
| 19 |
+
BitSequence = List[int] # List of 0s and 1s
|
| 20 |
+
BitTensor = torch.Tensor # Tensor containing 0s and 1s
|
| 21 |
+
BitBatch = Union[List[BitSequence], torch.Tensor]
|
| 22 |
+
|
| 23 |
+
# Model types
|
| 24 |
+
ModelOutput = Union[torch.Tensor, Tuple[torch.Tensor, ...]]
|
| 25 |
+
TelemetryDict = Dict[str, Union[float, List[float], torch.Tensor]]
|
| 26 |
+
SafetyMetrics = Dict[str, float]
|
| 27 |
+
|
| 28 |
+
# File and path types
|
| 29 |
+
PathLike = Union[str, Path]
|
| 30 |
+
OptionalPath = Optional[PathLike]
|
| 31 |
+
|
| 32 |
+
# Training types
|
| 33 |
+
LossValue = Union[float, torch.Tensor]
|
| 34 |
+
OptimizerState = Dict[str, Any]
|
| 35 |
+
SchedulerState = Dict[str, Any]
|
| 36 |
+
|
| 37 |
+
# Configuration types
|
| 38 |
+
ModelConfig = Dict[str, Any]
|
| 39 |
+
TrainingConfig = Dict[str, Any]
|
| 40 |
+
DatasetConfig = Dict[str, Any]
|
| 41 |
+
|
| 42 |
+
# HuggingFace types
|
| 43 |
+
HFRepoId = str
|
| 44 |
+
HFToken = Optional[str]
|
| 45 |
+
|
| 46 |
+
# Function type protocols
|
| 47 |
+
class ModelForward(Protocol):
|
| 48 |
+
"""Protocol for model forward functions."""
|
| 49 |
+
def __call__(self,
|
| 50 |
+
inputs: BitTensor,
|
| 51 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 52 |
+
**kwargs) -> ModelOutput: ...
|
| 53 |
+
|
| 54 |
+
class LossFunction(Protocol):
|
| 55 |
+
"""Protocol for loss functions."""
|
| 56 |
+
def __call__(self,
|
| 57 |
+
predictions: torch.Tensor,
|
| 58 |
+
targets: torch.Tensor) -> LossValue: ...
|
| 59 |
+
|
| 60 |
+
class MetricFunction(Protocol):
|
| 61 |
+
"""Protocol for metric computation functions."""
|
| 62 |
+
def __call__(self,
|
| 63 |
+
predictions: torch.Tensor,
|
| 64 |
+
targets: torch.Tensor) -> float: ...
|
| 65 |
+
|
| 66 |
+
# Compression types
|
| 67 |
+
CompressedData = torch.Tensor
|
| 68 |
+
CompressionRatio = float
|
| 69 |
+
|
| 70 |
+
# Safety and telemetry types
|
| 71 |
+
NegentropyScore = float # K metric: 0 (random) to 1 (ordered)
|
| 72 |
+
ComplexityScore = float # C metric: LZ complexity proxy
|
| 73 |
+
SymbiosisScore = float # S metric: KL divergence alignment
|
| 74 |
+
|
| 75 |
+
SafetyThresholds = Dict[str, float]
|
| 76 |
+
TelemetryCallback = Callable[[TelemetryDict], None]
|
| 77 |
+
|
| 78 |
+
# Distributed training types
|
| 79 |
+
WorldSize = int
|
| 80 |
+
ProcessRank = int
|
| 81 |
+
DistributedConfig = Dict[str, Any]
|
| 82 |
+
|
| 83 |
+
# Quantization types
|
| 84 |
+
QuantizationConfig = Dict[str, Any]
|
| 85 |
+
QuantizedModel = torch.nn.Module
|
| 86 |
+
|
| 87 |
+
# Common type aliases for cleaner signatures
|
| 88 |
+
BatchSize = int
|
| 89 |
+
SequenceLength = int
|
| 90 |
+
VocabSize = int
|
| 91 |
+
HiddenSize = int
|
| 92 |
+
NumHeads = int
|
| 93 |
+
NumLayers = int
|
| 94 |
+
|
| 95 |
+
# Attention types
|
| 96 |
+
AttentionWeights = torch.Tensor
|
| 97 |
+
AttentionMask = Optional[torch.Tensor]
|
| 98 |
+
ChunkSize = Optional[int]
|
| 99 |
+
|
| 100 |
+
# Generation types
|
| 101 |
+
GenerationConfig = Dict[str, Any]
|
| 102 |
+
GeneratedSequence = BitSequence
|
| 103 |
+
GenerationCallback = Callable[[GeneratedSequence], None]
|
| 104 |
+
|
| 105 |
+
# Diffusion types
|
| 106 |
+
NoiseSchedule = str # 'linear', 'cosine', 'exponential'
|
| 107 |
+
DiffusionSteps = int
|
| 108 |
+
DiffusionConfig = Dict[str, Any]
|
| 109 |
+
|
| 110 |
+
# Error handling types
|
| 111 |
+
ErrorHandler = Callable[[Exception], None]
|
| 112 |
+
RecoveryStrategy = Callable[[], Any]
|
| 113 |
+
|
| 114 |
+
# Logging types
|
| 115 |
+
LogLevel = str # 'DEBUG', 'INFO', 'WARNING', 'ERROR'
|
| 116 |
+
LogMessage = str
|
| 117 |
+
Logger = Any # To avoid circular import with logging module
|