π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- markov_spline_training.py +438 -0
markov_spline_training.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
MarkovSpline-Enhanced BitTransformerLM Training
|
| 4 |
+
|
| 5 |
+
Integrates MarkovSpline data smoothing directly into BitTransformerLM training pipeline
|
| 6 |
+
for improved data preprocessing and gradient optimization.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import sys
|
| 11 |
+
import json
|
| 12 |
+
import time
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import torch.optim as optim
|
| 16 |
+
import numpy as np
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Dict, List, Tuple, Optional, Any
|
| 19 |
+
from torch.utils.data import DataLoader, Dataset
|
| 20 |
+
|
| 21 |
+
# Add MarkovSpline to path
|
| 22 |
+
sys.path.insert(0, '/data/MarkovSpline')
|
| 23 |
+
from bitpipe_integration import MarkovSplineBitPipeModule, create_markov_spline_bitpipe_module
|
| 24 |
+
|
| 25 |
+
# BitTransformerLM imports
|
| 26 |
+
from bit_transformer.model import BitTransformerLM
|
| 27 |
+
from bit_transformer.telemetry import TelemetrySynthesizer
|
| 28 |
+
|
| 29 |
+
# Simple trainer base class
|
| 30 |
+
class BitwiseTrainer:
|
| 31 |
+
"""Simple base trainer for BitTransformerLM."""
|
| 32 |
+
|
| 33 |
+
def __init__(self, model, learning_rate=1e-3, max_grad_norm=1.0):
|
| 34 |
+
self.model = model
|
| 35 |
+
self.device = next(model.parameters()).device
|
| 36 |
+
self.optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
| 37 |
+
self.criterion = nn.CrossEntropyLoss()
|
| 38 |
+
self.max_grad_norm = max_grad_norm
|
| 39 |
+
|
| 40 |
+
def train_step(self, batch):
|
| 41 |
+
"""Simple training step."""
|
| 42 |
+
self.optimizer.zero_grad()
|
| 43 |
+
|
| 44 |
+
outputs = self.model(batch['input_bits'])
|
| 45 |
+
# BitTransformerLM returns (logits, telemetry)
|
| 46 |
+
if isinstance(outputs, tuple):
|
| 47 |
+
logits, telemetry = outputs
|
| 48 |
+
else:
|
| 49 |
+
logits = outputs
|
| 50 |
+
|
| 51 |
+
loss = self.criterion(logits.reshape(-1, logits.size(-1)), batch['target_bits'].reshape(-1))
|
| 52 |
+
|
| 53 |
+
loss.backward()
|
| 54 |
+
|
| 55 |
+
if self.max_grad_norm > 0:
|
| 56 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
|
| 57 |
+
|
| 58 |
+
self.optimizer.step()
|
| 59 |
+
|
| 60 |
+
return {'loss': loss.item()}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class MarkovSplineEnhancedDataset(Dataset):
|
| 64 |
+
"""Dataset wrapper that applies MarkovSpline preprocessing."""
|
| 65 |
+
|
| 66 |
+
def __init__(self,
|
| 67 |
+
base_dataset: Dataset,
|
| 68 |
+
markov_module: MarkovSplineBitPipeModule,
|
| 69 |
+
smoothing_strength: float = 0.1,
|
| 70 |
+
enable_smoothing: bool = True):
|
| 71 |
+
|
| 72 |
+
self.base_dataset = base_dataset
|
| 73 |
+
self.markov_module = markov_module
|
| 74 |
+
self.smoothing_strength = smoothing_strength
|
| 75 |
+
self.enable_smoothing = enable_smoothing
|
| 76 |
+
|
| 77 |
+
# Initialize data preprocessor
|
| 78 |
+
if enable_smoothing:
|
| 79 |
+
self.markov_module.initialize_application('data_preprocessor',
|
| 80 |
+
smoothing_strength=smoothing_strength,
|
| 81 |
+
preserve_features=True)
|
| 82 |
+
|
| 83 |
+
def __len__(self):
|
| 84 |
+
return len(self.base_dataset)
|
| 85 |
+
|
| 86 |
+
def __getitem__(self, idx):
|
| 87 |
+
# Get original data
|
| 88 |
+
data = self.base_dataset[idx]
|
| 89 |
+
|
| 90 |
+
if not self.enable_smoothing:
|
| 91 |
+
return data
|
| 92 |
+
|
| 93 |
+
# Apply MarkovSpline preprocessing to bit sequences
|
| 94 |
+
if isinstance(data, dict) and 'input_bits' in data:
|
| 95 |
+
try:
|
| 96 |
+
# Smooth input bits
|
| 97 |
+
result = self.markov_module.process_data(
|
| 98 |
+
[data['input_bits']],
|
| 99 |
+
'preprocess_training',
|
| 100 |
+
binary_data=True
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
if result['success'] and result['processed_sequences']:
|
| 104 |
+
data['input_bits'] = result['processed_sequences'][0]
|
| 105 |
+
data['smoothing_applied'] = True
|
| 106 |
+
else:
|
| 107 |
+
data['smoothing_applied'] = False
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Warning: MarkovSpline preprocessing failed for sample {idx}: {e}")
|
| 111 |
+
data['smoothing_applied'] = False
|
| 112 |
+
|
| 113 |
+
return data
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class MarkovSplineEnhancedTrainer(BitwiseTrainer):
|
| 117 |
+
"""Enhanced BitTransformerLM trainer with MarkovSpline integration."""
|
| 118 |
+
|
| 119 |
+
def __init__(self,
|
| 120 |
+
model: BitTransformerLM,
|
| 121 |
+
markov_config: Optional[Dict] = None,
|
| 122 |
+
gradient_smoothing: bool = True,
|
| 123 |
+
data_smoothing: bool = True,
|
| 124 |
+
smoothing_strength: float = 0.1,
|
| 125 |
+
**kwargs):
|
| 126 |
+
|
| 127 |
+
super().__init__(model, **kwargs)
|
| 128 |
+
|
| 129 |
+
# Initialize MarkovSpline module
|
| 130 |
+
self.markov_module = create_markov_spline_bitpipe_module(markov_config)
|
| 131 |
+
self.gradient_smoothing = gradient_smoothing
|
| 132 |
+
self.data_smoothing = data_smoothing
|
| 133 |
+
self.smoothing_strength = smoothing_strength
|
| 134 |
+
|
| 135 |
+
# Initialize gradient smoother if enabled
|
| 136 |
+
if gradient_smoothing:
|
| 137 |
+
self.markov_module.initialize_application('gradient_smoother',
|
| 138 |
+
learning_rate=kwargs.get('learning_rate', 0.001),
|
| 139 |
+
smoothing_strength=smoothing_strength,
|
| 140 |
+
momentum_states=10)
|
| 141 |
+
|
| 142 |
+
# Tracking
|
| 143 |
+
self.smoothing_metrics = {}
|
| 144 |
+
self.gradient_smooth_history = []
|
| 145 |
+
|
| 146 |
+
print(f"π MarkovSpline Enhanced Trainer initialized")
|
| 147 |
+
print(f" - Gradient smoothing: {'β
' if gradient_smoothing else 'β'}")
|
| 148 |
+
print(f" - Data smoothing: {'β
' if data_smoothing else 'β'}")
|
| 149 |
+
print(f" - Smoothing strength: {smoothing_strength}")
|
| 150 |
+
|
| 151 |
+
def create_enhanced_dataloader(self,
|
| 152 |
+
dataset: Dataset,
|
| 153 |
+
batch_size: int = 8,
|
| 154 |
+
**kwargs) -> DataLoader:
|
| 155 |
+
"""Create dataloader with MarkovSpline preprocessing."""
|
| 156 |
+
|
| 157 |
+
enhanced_dataset = MarkovSplineEnhancedDataset(
|
| 158 |
+
dataset,
|
| 159 |
+
self.markov_module,
|
| 160 |
+
self.smoothing_strength,
|
| 161 |
+
self.data_smoothing
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
return DataLoader(enhanced_dataset, batch_size=batch_size, **kwargs)
|
| 165 |
+
|
| 166 |
+
def apply_gradient_smoothing(self,
|
| 167 |
+
parameters: Dict[str, torch.Tensor],
|
| 168 |
+
gradients: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 169 |
+
"""Apply MarkovSpline gradient smoothing."""
|
| 170 |
+
|
| 171 |
+
if not self.gradient_smoothing:
|
| 172 |
+
return parameters
|
| 173 |
+
|
| 174 |
+
try:
|
| 175 |
+
# Process through MarkovSpline gradient smoother
|
| 176 |
+
result = self.markov_module.process_data(
|
| 177 |
+
{
|
| 178 |
+
'parameters': parameters,
|
| 179 |
+
'gradients': gradients
|
| 180 |
+
},
|
| 181 |
+
'smooth_gradients'
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if result['success']:
|
| 185 |
+
self.gradient_smooth_history.append(result['optimization_metrics'])
|
| 186 |
+
return result['smoothed_parameters']
|
| 187 |
+
else:
|
| 188 |
+
print(f"Warning: Gradient smoothing failed: {result.get('error', 'Unknown')}")
|
| 189 |
+
return parameters
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
print(f"Warning: Gradient smoothing error: {e}")
|
| 193 |
+
return parameters
|
| 194 |
+
|
| 195 |
+
def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]:
|
| 196 |
+
"""Enhanced training step with MarkovSpline integration."""
|
| 197 |
+
|
| 198 |
+
# Standard forward pass
|
| 199 |
+
self.optimizer.zero_grad()
|
| 200 |
+
|
| 201 |
+
# Forward pass
|
| 202 |
+
outputs = self.model(batch['input_bits'])
|
| 203 |
+
# BitTransformerLM returns (logits, telemetry)
|
| 204 |
+
if isinstance(outputs, tuple):
|
| 205 |
+
logits, telemetry = outputs
|
| 206 |
+
else:
|
| 207 |
+
logits = outputs
|
| 208 |
+
|
| 209 |
+
loss = self.criterion(logits.reshape(-1, logits.size(-1)), batch['target_bits'].reshape(-1))
|
| 210 |
+
|
| 211 |
+
# Backward pass
|
| 212 |
+
loss.backward()
|
| 213 |
+
|
| 214 |
+
# Extract parameters and gradients for smoothing
|
| 215 |
+
if self.gradient_smoothing:
|
| 216 |
+
parameters = {}
|
| 217 |
+
gradients = {}
|
| 218 |
+
|
| 219 |
+
for name, param in self.model.named_parameters():
|
| 220 |
+
if param.grad is not None:
|
| 221 |
+
parameters[name] = param.data.clone()
|
| 222 |
+
gradients[name] = param.grad.data.clone()
|
| 223 |
+
|
| 224 |
+
# Apply MarkovSpline gradient smoothing
|
| 225 |
+
smoothed_params = self.apply_gradient_smoothing(parameters, gradients)
|
| 226 |
+
|
| 227 |
+
# Update model parameters with smoothed values
|
| 228 |
+
for name, param in self.model.named_parameters():
|
| 229 |
+
if name in smoothed_params:
|
| 230 |
+
param.data = smoothed_params[name]
|
| 231 |
+
|
| 232 |
+
# Standard optimizer step
|
| 233 |
+
if self.max_grad_norm > 0:
|
| 234 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
|
| 235 |
+
|
| 236 |
+
self.optimizer.step()
|
| 237 |
+
|
| 238 |
+
# Collect metrics
|
| 239 |
+
metrics = {
|
| 240 |
+
'loss': loss.item(),
|
| 241 |
+
'smoothing_applied': batch.get('smoothing_applied', torch.tensor(False)).float().mean().item()
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
if hasattr(batch, 'smoothing_applied'):
|
| 245 |
+
metrics['data_smoothing_rate'] = batch['smoothing_applied'].float().mean().item()
|
| 246 |
+
|
| 247 |
+
return metrics
|
| 248 |
+
|
| 249 |
+
def train_epoch(self,
|
| 250 |
+
train_loader: DataLoader,
|
| 251 |
+
epoch: int) -> Dict[str, float]:
|
| 252 |
+
"""Train one epoch with MarkovSpline enhancements."""
|
| 253 |
+
|
| 254 |
+
self.model.train()
|
| 255 |
+
epoch_metrics = {
|
| 256 |
+
'loss': 0.0,
|
| 257 |
+
'smoothing_applied': 0.0,
|
| 258 |
+
'data_smoothing_rate': 0.0,
|
| 259 |
+
'gradient_smoothing_success': 0.0
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
num_batches = 0
|
| 263 |
+
|
| 264 |
+
for batch_idx, batch in enumerate(train_loader):
|
| 265 |
+
# Move batch to device
|
| 266 |
+
for key in batch:
|
| 267 |
+
if isinstance(batch[key], torch.Tensor):
|
| 268 |
+
batch[key] = batch[key].to(self.device)
|
| 269 |
+
|
| 270 |
+
# Training step with MarkovSpline integration
|
| 271 |
+
step_metrics = self.train_step(batch)
|
| 272 |
+
|
| 273 |
+
# Accumulate metrics
|
| 274 |
+
for key, value in step_metrics.items():
|
| 275 |
+
if key in epoch_metrics:
|
| 276 |
+
epoch_metrics[key] += value
|
| 277 |
+
|
| 278 |
+
num_batches += 1
|
| 279 |
+
|
| 280 |
+
# Log progress
|
| 281 |
+
if batch_idx % 10 == 0:
|
| 282 |
+
print(f" Batch {batch_idx:3d}: Loss={step_metrics['loss']:.4f}")
|
| 283 |
+
|
| 284 |
+
# Average metrics
|
| 285 |
+
for key in epoch_metrics:
|
| 286 |
+
epoch_metrics[key] /= num_batches
|
| 287 |
+
|
| 288 |
+
return epoch_metrics
|
| 289 |
+
|
| 290 |
+
def get_markov_spline_metrics(self) -> Dict[str, Any]:
|
| 291 |
+
"""Get comprehensive MarkovSpline performance metrics."""
|
| 292 |
+
|
| 293 |
+
metrics = self.markov_module.get_performance_metrics()
|
| 294 |
+
|
| 295 |
+
# Add training-specific metrics
|
| 296 |
+
metrics['training_integration'] = {
|
| 297 |
+
'gradient_smoothing_enabled': self.gradient_smoothing,
|
| 298 |
+
'data_smoothing_enabled': self.data_smoothing,
|
| 299 |
+
'smoothing_strength': self.smoothing_strength,
|
| 300 |
+
'gradient_smooth_operations': len(self.gradient_smooth_history)
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
if self.gradient_smooth_history:
|
| 304 |
+
recent_gradient_metrics = self.gradient_smooth_history[-10:] # Last 10 operations
|
| 305 |
+
metrics['recent_gradient_smoothing'] = {
|
| 306 |
+
'average_metrics': {
|
| 307 |
+
key: np.mean([m.get(key, 0) for m in recent_gradient_metrics])
|
| 308 |
+
for key in recent_gradient_metrics[0].keys()
|
| 309 |
+
} if recent_gradient_metrics else {}
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
return metrics
|
| 313 |
+
|
| 314 |
+
def save_enhanced_checkpoint(self,
|
| 315 |
+
checkpoint_path: str,
|
| 316 |
+
epoch: int,
|
| 317 |
+
metrics: Dict[str, float]):
|
| 318 |
+
"""Save checkpoint with MarkovSpline state."""
|
| 319 |
+
|
| 320 |
+
# Standard checkpoint data
|
| 321 |
+
checkpoint = {
|
| 322 |
+
'epoch': epoch,
|
| 323 |
+
'model_state_dict': self.model.state_dict(),
|
| 324 |
+
'optimizer_state_dict': self.optimizer.state_dict(),
|
| 325 |
+
'metrics': metrics,
|
| 326 |
+
'config': self.model.get_config()
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
# Add MarkovSpline metrics
|
| 330 |
+
checkpoint['markov_spline_metrics'] = self.get_markov_spline_metrics()
|
| 331 |
+
checkpoint['markov_spline_config'] = {
|
| 332 |
+
'gradient_smoothing': self.gradient_smoothing,
|
| 333 |
+
'data_smoothing': self.data_smoothing,
|
| 334 |
+
'smoothing_strength': self.smoothing_strength
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
# Save MarkovSpline module state
|
| 338 |
+
markov_state_path = Path(checkpoint_path).parent / 'markov_spline_state'
|
| 339 |
+
self.markov_module.save_module_state(markov_state_path)
|
| 340 |
+
|
| 341 |
+
torch.save(checkpoint, checkpoint_path)
|
| 342 |
+
print(f"β
Enhanced checkpoint saved: {checkpoint_path}")
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def create_markov_enhanced_training_config(base_config: Dict) -> Dict:
|
| 346 |
+
"""Create training configuration with MarkovSpline enhancements."""
|
| 347 |
+
|
| 348 |
+
enhanced_config = base_config.copy()
|
| 349 |
+
|
| 350 |
+
# MarkovSpline specific settings
|
| 351 |
+
enhanced_config.update({
|
| 352 |
+
'markov_spline': {
|
| 353 |
+
'enabled': True,
|
| 354 |
+
'gradient_smoothing': True,
|
| 355 |
+
'data_smoothing': True,
|
| 356 |
+
'smoothing_strength': 0.1,
|
| 357 |
+
'num_states': 10,
|
| 358 |
+
'spline_type': 'cubic',
|
| 359 |
+
'adaptive_smoothing': True
|
| 360 |
+
},
|
| 361 |
+
'data_preprocessing': {
|
| 362 |
+
'smooth_training_data': True,
|
| 363 |
+
'preserve_features': True,
|
| 364 |
+
'preprocessing_strength': 0.15
|
| 365 |
+
},
|
| 366 |
+
'gradient_optimization': {
|
| 367 |
+
'smooth_gradients': True,
|
| 368 |
+
'momentum_states': 10,
|
| 369 |
+
'learning_rate_smoothing': 0.2
|
| 370 |
+
}
|
| 371 |
+
})
|
| 372 |
+
|
| 373 |
+
return enhanced_config
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def run_markov_enhanced_training(config_file: str = None):
|
| 377 |
+
"""Run BitTransformerLM training with MarkovSpline enhancements."""
|
| 378 |
+
|
| 379 |
+
# Load configuration
|
| 380 |
+
if config_file and os.path.exists(config_file):
|
| 381 |
+
with open(config_file, 'r') as f:
|
| 382 |
+
config = json.load(f)
|
| 383 |
+
else:
|
| 384 |
+
# Default enhanced configuration
|
| 385 |
+
config = create_markov_enhanced_training_config({
|
| 386 |
+
'model': {
|
| 387 |
+
'd_model': 128,
|
| 388 |
+
'nhead': 8,
|
| 389 |
+
'num_layers': 4,
|
| 390 |
+
'dim_feedforward': 512,
|
| 391 |
+
'max_seq_len': 512
|
| 392 |
+
},
|
| 393 |
+
'training': {
|
| 394 |
+
'batch_size': 8,
|
| 395 |
+
'learning_rate': 1e-4,
|
| 396 |
+
'epochs': 10,
|
| 397 |
+
'max_grad_norm': 1.0
|
| 398 |
+
}
|
| 399 |
+
})
|
| 400 |
+
|
| 401 |
+
print("π Starting MarkovSpline-Enhanced BitTransformerLM Training")
|
| 402 |
+
print(f"π Configuration: {json.dumps(config, indent=2)}")
|
| 403 |
+
|
| 404 |
+
# Initialize model
|
| 405 |
+
model_config = config['model']
|
| 406 |
+
model = BitTransformerLM(**model_config)
|
| 407 |
+
|
| 408 |
+
# Initialize enhanced trainer
|
| 409 |
+
trainer = MarkovSplineEnhancedTrainer(
|
| 410 |
+
model=model,
|
| 411 |
+
markov_config=config.get('markov_spline'),
|
| 412 |
+
gradient_smoothing=config['markov_spline']['gradient_smoothing'],
|
| 413 |
+
data_smoothing=config['markov_spline']['data_smoothing'],
|
| 414 |
+
smoothing_strength=config['markov_spline']['smoothing_strength'],
|
| 415 |
+
**config['training']
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
print("π Enhanced training pipeline initialized successfully!")
|
| 419 |
+
return trainer, config
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
if __name__ == '__main__':
|
| 423 |
+
import argparse
|
| 424 |
+
|
| 425 |
+
parser = argparse.ArgumentParser(description='MarkovSpline-Enhanced BitTransformerLM Training')
|
| 426 |
+
parser.add_argument('--config', '-c', help='Configuration file path')
|
| 427 |
+
parser.add_argument('--output-dir', '-o', default='./markov_enhanced_checkpoints',
|
| 428 |
+
help='Output directory for checkpoints')
|
| 429 |
+
|
| 430 |
+
args = parser.parse_args()
|
| 431 |
+
|
| 432 |
+
# Create output directory
|
| 433 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 434 |
+
|
| 435 |
+
# Run enhanced training
|
| 436 |
+
trainer, config = run_markov_enhanced_training(args.config)
|
| 437 |
+
|
| 438 |
+
print(f"π MarkovSpline metrics: {trainer.get_markov_spline_metrics()}")
|