Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from jhgan/ko-sroberta-multitask. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'겁남',
'선호',
'후련함',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
자만심 |
처량함 |
0.3356956711091378 |
실망 |
연민 |
0.3267507385483022 |
감동 |
이뻐함 |
0.6483006382304752 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.0851 | 500 | 0.0114 |
| 0.1703 | 1000 | 0.0065 |
| 0.2554 | 1500 | 0.0048 |
| 0.3405 | 2000 | 0.0039 |
| 0.4257 | 2500 | 0.0032 |
| 0.5108 | 3000 | 0.003 |
| 0.5959 | 3500 | 0.0026 |
| 0.6811 | 4000 | 0.0026 |
| 0.7662 | 4500 | 0.0025 |
| 0.8514 | 5000 | 0.0022 |
| 0.9365 | 5500 | 0.0022 |
| 1.0216 | 6000 | 0.0021 |
| 1.1068 | 6500 | 0.0019 |
| 1.1919 | 7000 | 0.0017 |
| 1.2770 | 7500 | 0.0017 |
| 1.3622 | 8000 | 0.0017 |
| 1.4473 | 8500 | 0.0015 |
| 1.5324 | 9000 | 0.0015 |
| 1.6176 | 9500 | 0.0014 |
| 1.7027 | 10000 | 0.0014 |
| 1.7878 | 10500 | 0.0014 |
| 1.8730 | 11000 | 0.0012 |
| 1.9581 | 11500 | 0.0012 |
| 2.0432 | 12000 | 0.0013 |
| 2.1284 | 12500 | 0.0011 |
| 2.2135 | 13000 | 0.0011 |
| 2.2987 | 13500 | 0.0011 |
| 2.3838 | 14000 | 0.001 |
| 2.4689 | 14500 | 0.001 |
| 2.5541 | 15000 | 0.001 |
| 2.6392 | 15500 | 0.0009 |
| 2.7243 | 16000 | 0.0009 |
| 2.8095 | 16500 | 0.001 |
| 2.8946 | 17000 | 0.0009 |
| 2.9797 | 17500 | 0.0008 |
| 3.0649 | 18000 | 0.0008 |
| 3.1500 | 18500 | 0.0008 |
| 3.2351 | 19000 | 0.0007 |
| 3.3203 | 19500 | 0.0007 |
| 3.4054 | 20000 | 0.0008 |
| 3.4905 | 20500 | 0.0007 |
| 3.5757 | 21000 | 0.0007 |
| 3.6608 | 21500 | 0.0007 |
| 3.7460 | 22000 | 0.0007 |
| 3.8311 | 22500 | 0.0006 |
| 3.9162 | 23000 | 0.0006 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
jhgan/ko-sroberta-multitask