Persian-OCR
Persian-OCR is a deep learning model for Optical Character Recognition (OCR), designed specifically for Persian text.
The model employs a CNN + Transformer architecture trained with CTC loss to extract text from images.
The model was trained on a custom dataset of approximately 600,000 synthetic Persian text images.
These images were generated from Wikipedia text using 49 different Persian fonts, with sequence lengths ranging from 0 to 150 characters.
On this dataset, the model achieves a sequence accuracy of 96%.
The model may benefit from further fine-tuning on real-world data, and contributions or collaborations are warmly welcomed.
π€ Contributing
Contributions are welcome! If you have a dataset of real-world Persian text or improvements to the model, please open an issue or submit a pull request.
π¬ Contact
For collaboration or inquiries, please reach out via [email protected]
Files
pytorch_model.bin: PyTorch model weightsvocab.json: Character vocabularymodel.py: Python script defining the CNN + Transformer OCR modelutils.py: Utility functions for OCR, includingocr_pageandload_vocabconfig.json: Model configuration
Installation
pip install torch torchvision huggingface_hub
Usage
import torch
import json
import sys
import importlib.util
from huggingface_hub import hf_hub_download
# 1οΈβ£ Load vocab
vocab_path = hf_hub_download("farbodpya/Persian-OCR", "vocab.json")
with open(vocab_path, "r", encoding="utf-8") as f:
vocab = json.load(f)
idx_to_char = {int(k): v for k, v in vocab["idx_to_char"].items()}
# 2οΈβ£ Import model.py
model_file = hf_hub_download("farbodpya/Persian-OCR", "model.py")
spec_model = importlib.util.spec_from_file_location("model", model_file)
model_module = importlib.util.module_from_spec(spec_model)
sys.modules["model"] = model_module
spec_model.loader.exec_module(model_module)
from model import CNN_Transformer_OCR
# 3οΈβ£ Import utils.py
utils_file = hf_hub_download("farbodpya/Persian-OCR", "utils.py")
spec_utils = importlib.util.spec_from_file_location("utils", utils_file)
utils_module = importlib.util.module_from_spec(spec_utils)
sys.modules["utils"] = utils_module
spec_utils.loader.exec_module(utils_module)
from utils import ocr_page
# 4οΈβ£ Load model weights
weights_path = hf_hub_download("farbodpya/Persian-OCR", "pytorch_model.bin")
model = CNN_Transformer_OCR(num_classes=len(idx_to_char)+1)
model.load_state_dict(torch.load(weights_path, map_location="cpu"))
model.eval()
# 5οΈβ£ Run OCR on an image
img_path = "sample.png" # replace with your own image
text = ocr_page(img_path, model, idx_to_char)
print("\n=== Final OCR Page ===\n", text)
- Downloads last month
- 140