ironrock's picture
Model save
74e3fcb verified
|
raw
history blame
3.27 kB
metadata
library_name: peft
tags:
  - trl
  - dpo
  - DPO
  - WeniGPT
  - generated_from_trainer
base_model: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged
model-index:
  - name: WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
    results: []

WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO

This model is a fine-tuned version of Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0048
  • Rewards/chosen: 3.9169
  • Rewards/rejected: -6.2067
  • Rewards/accuracies: 1.0
  • Rewards/margins: 10.1235
  • Logps/rejected: -240.9936
  • Logps/chosen: -117.4673
  • Logits/rejected: -1.9027
  • Logits/chosen: -1.8786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 180
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.225 0.9677 30 0.2227 2.6681 -1.0085 1.0 3.6765 -215.0026 -123.7113 -1.9566 -1.9326
0.0853 1.9355 60 0.1095 3.7286 -2.2208 1.0 5.9494 -221.0642 -118.4086 -1.9400 -1.9170
0.0285 2.9032 90 0.0545 4.1460 -3.9811 1.0 8.1270 -229.8655 -116.3218 -1.9301 -1.9063
0.001 3.8710 120 0.0468 4.1806 -5.0175 1.0 9.1980 -235.0477 -116.1489 -1.9141 -1.8902
0.0021 4.8387 150 0.0087 3.9958 -5.9294 1.0 9.9252 -239.6072 -117.0728 -1.9056 -1.8815
0.0014 5.8065 180 0.0048 3.9169 -6.2067 1.0 10.1235 -240.9936 -117.4673 -1.9027 -1.8786

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.18.0
  • Tokenizers 0.19.1