Wiebke's picture
End of training
8c0effc verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-german-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: flausch_span_distilbert-base-german-cased_non_labeled_spans
    results: []

flausch_span_distilbert-base-german-cased_non_labeled_spans

This model is a fine-tuned version of distilbert/distilbert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2139
  • Model Preparation Time: 0.0025
  • Precision: 0.5524
  • Recall: 0.6267
  • F1: 0.5872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Precision Recall F1
0.3169 0.4233 750 0.2247 0.0025 0.3873 0.4623 0.4215
0.2218 0.8465 1500 0.2164 0.0025 0.4657 0.5182 0.4906
0.1831 1.2698 2250 0.2090 0.0025 0.4974 0.5964 0.5424
0.1564 1.6930 3000 0.2038 0.0025 0.5212 0.6172 0.5652
0.1535 2.1163 3750 0.2118 0.0025 0.5447 0.6087 0.5749
0.1206 2.5395 4500 0.2106 0.0025 0.5418 0.6262 0.5810
0.1182 2.9628 5250 0.2139 0.0025 0.5524 0.6267 0.5872

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1