Wiebke's picture
End of training
25594dc verified
metadata
library_name: transformers
license: mit
base_model: deepset/gbert-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: flausch_span_gbert-large_all
    results: []

flausch_span_gbert-large_all

This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2622
  • Model Preparation Time: 0.0328
  • Precision: 0.4348
  • Recall: 0.5821
  • F1: 0.4978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Precision Recall F1
0.9007 0.2822 500 0.7977 0.0328 0.0 0.0 0.0
0.7223 0.5643 1000 0.6214 0.0328 0.2047 0.1514 0.1741
0.5327 0.8465 1500 0.4041 0.0328 0.2262 0.3583 0.2773
0.3691 1.1287 2000 0.3349 0.0328 0.2819 0.4330 0.3415
0.3021 1.4108 2500 0.3013 0.0328 0.3222 0.4524 0.3764
0.2548 1.6930 3000 0.2655 0.0328 0.3821 0.5263 0.4428
0.2744 1.9752 3500 0.2666 0.0328 0.3072 0.4037 0.3489
0.1874 2.2573 4000 0.2803 0.0328 0.4124 0.5461 0.4700
0.1767 2.5395 4500 0.2625 0.0328 0.4421 0.5802 0.5018
0.1708 2.8217 5000 0.2622 0.0328 0.4348 0.5821 0.4978

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1