|
--- |
|
license: apache-2.0 |
|
language: |
|
- id |
|
base_model: |
|
- sarahlintang/mistral-indo-7b |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- mistral |
|
- text-generation-inference |
|
--- |
|
# CiptakerLM v1 |
|
Dataset used for Fine-Tuning: <a href="https://github.com/Willy030125/LLM_Ciptaker/blob/main/Notebook/Ciptaker-sft-data-preparation.ipynb">Ciptaker-sft-data-preparation.ipynb</a><br> |
|
Base model: <a href="https://huggingface.co/sarahlintang/mistral-indo-7b">sarahlintang/mistral-indo-7b</a><br> |
|
Trained on 1x3090 @ 24 epochs<br> |
|
|
|
Train logs, metrics, and params: https://wandb.ai/willy030125/MistralCiptaker_v0.2_SFT/runs/c9so5vf8 <br> |
|
Inference example using Colab T4: <a href="https://github.com/Willy030125/LLM_Ciptaker/blob/main/Notebook/CiptakerLM-fine-tune-inference.ipynb">CiptakerLM-fine-tune-inference.ipynb</a><br> |
|
Eval results using Colab T4: <a href="https://github.com/Willy030125/LLM_Ciptaker/blob/main/Notebook/CiptakerLM-fin-tune-eval.ipynb">CiptakerLM-fine-tune-eval.ipynb</a><br> |
|
|
|
### Prompt template: |
|
``` |
|
### Human: {Instruction} ### Assistant: {response} |
|
``` |
|
|
|
### Usage example: |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, GenerationConfig |
|
|
|
model_id = "Willy030125/CiptakerLM-v1" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(device) |
|
|
|
def create_instruction(instruction): |
|
prompt = f"### Human: {instruction} ### Assistant: " |
|
return prompt |
|
|
|
def generate( |
|
instruction, |
|
max_new_tokens=2048, |
|
temperature=0.1, |
|
top_p=0.95, |
|
top_k=40, |
|
num_beams=4, |
|
**kwargs |
|
): |
|
|
|
prompt = create_instruction(instruction) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
attention_mask = inputs["attention_mask"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
do_sample=True, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
early_stopping=True |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s, skip_special_tokens=True) |
|
return output.split("### Assistant:")[1].strip() |
|
|
|
instruction = "Apa sanksi bagi pengusaha yang melanggar ketentuan dalam Pasal 42 ayat (2) tentang pekerja asing?" |
|
print(generate(instruction)) |
|
``` |
|
Output: |
|
> Pengusaha dapat dikenai sanksi pidana penjara 1-4 tahun dan/atau denda antara Rp100.000.000 hingga Rp400.000.000. |