|
--- |
|
language: es |
|
datasets: |
|
- Xelta/response_mongo_text |
|
metrics: |
|
- accuracy |
|
tags: |
|
- llama |
|
- 4bit |
|
- lora |
|
model-index: |
|
- name: llama-2-7b-miniXelta |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: response_mongo_text |
|
type: Xelta/response_mongo_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.95 |
|
--- |
|
|
|
# Llama-2-7b-miniXelta |
|
|
|
Este es un modelo ajustado a partir del modelo Llama-2-7b-chat-hf utilizando LoRA y precisi贸n de 4 bits. Ha sido entrenado con el conjunto de datos `Xelta/response_mongo_text`. |
|
|
|
## Uso |
|
|
|
Puedes usar este modelo para generaci贸n de texto de la siguiente manera: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "username/llama-2-7b-miniXelta" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Quiero inscribirme, soy Mattias y mi edad es 28 a帽os" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|