W1nd-navigator's picture
Update README.md
23772f4 verified
metadata
license: mit
datasets:
  - mteb/scifact
language:
  - en
pipeline_tag: text-retrieval
library_name: sentence-transformers
tags:
  - mteb
  - text
  - transformers
  - text-embeddings-inference
  - CSR
model-index:
  - name: CSR
    results:
      - dataset:
          name: MTEB SciFact
          type: mteb/scifact
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
          config: default
          split: test
          languages:
            - eng-Latn
        metrics:
          - type: ndcg@1
            value: 0.59333
          - type: ndcg@3
            value: 0.65703
          - type: ndcg@5
            value: 0.67072
          - type: ndcg@10
            value: 0.68412
          - type: ndcg@20
            value: 0.69238
          - type: ndcg@100
            value: 0.70514
          - type: ndcg@1000
            value: 0.71517
          - type: map@1
            value: 0.5675
          - type: map@3
            value: 0.63602
          - type: map@5
            value: 0.64712
          - type: map@10
            value: 0.65301
          - type: map@20
            value: 0.65552
          - type: map@100
            value: 0.65778
          - type: map@1000
            value: 0.65815
          - type: recall@1
            value: 0.5675
          - type: recall@3
            value: 0.69772
          - type: recall@5
            value: 0.73367
          - type: recall@10
            value: 0.77333
          - type: recall@20
            value: 0.80367
          - type: recall@100
            value: 0.86667
          - type: recall@1000
            value: 0.945
          - type: precision@1
            value: 0.59333
          - type: precision@3
            value: 0.25667
          - type: precision@5
            value: 0.164
          - type: precision@10
            value: 0.08667
          - type: precision@20
            value: 0.04533
          - type: precision@100
            value: 0.0099
          - type: precision@1000
            value: 0.00107
          - type: mrr@1
            value: 0.59333
          - type: mrr@3
            value: 0.64667
          - type: mrr@5
            value: 0.65333
          - type: mrr@10
            value: 0.65883
          - type: mrr@20
            value: 0.66105
          - type: mrr@100
            value: 0.66254
          - type: mrr@1000
            value: 0.66292
          - type: main_score
            value: 0.68412
        task:
          type: Retrieval

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our Github.

Usage

📌 Tip: For NV-Embed-V2, using Transformers versions later than 4.47.0 may lead to performance degradation, as model_type=bidir_mistral in config.json is no longer supported.

We recommend using Transformers 4.47.0.

Sentence Transformers Usage

You can evaluate this model loaded by Sentence Transformers with the following code snippet:

import mteb
from sentence_transformers import SparseEncoder
model = SparseEncoder(
    "Y-Research-Group/CSR-NV_Embed_v2-Retrieval-SciFACT ",
    trust_remote_code=True
)
model.prompts = {
    "SciFact-query": "Instrcut: Given a scientific claim, retrieve documents that support or refute the claim\nQuery:"
}
task = mteb.get_tasks(tasks=["SciFact"])
evaluation = mteb.MTEB(tasks=task)
evaluation.run(
    model,
    eval_splits=["test"],
    output_folder="./results/SciFact",
    show_progress_bar=True
    encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8},
)  # MTEB don't support sparse tensors yet, so we need to convert to dense tensors

Citation

@inproceedings{wenbeyond,
  title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
  author={Wen, Tiansheng and Wang, Yifei and Zeng, Zequn and Peng, Zhong and Su, Yudi and Liu, Xinyang and Chen, Bo and Liu, Hongwei and Jegelka, Stefanie and You, Chenyu},
  booktitle={Forty-second International Conference on Machine Learning}
}