RadFig-classifier

A deep learning model for classifying medical images as suitable or unsuitable for Visual Question Answering (VQA) tasks. This classifier helps filter medical images to identify those that are appropriate for VQA applications.

Overview

RadFig-classifier is based on EfficientNetV2-S architecture and trained on medical imaging data to determine whether an image contains sufficient visual information for meaningful question-answering tasks. The model uses ensemble prediction across 5-fold cross-validation models for robust performance.

Installation

Requirements

pip install torch torchvision timm opencv-python albumentations pandas tqdm pillow numpy

Command Line Usage

Single Image Classification

# Get probability score
python inference.py --input image.jpg

# Get binary classification
python inference.py --input image.jpg --binary

Batch Processing

# Process all images in directory
python inference.py --input /path/to/images/ --output results.csv

# Binary classification with CSV output
python inference.py --input /path/to/images/ --output results.csv --binary

Model Architecture

  • Base Model: EfficientNetV2-S
  • Input Size: 512Γ—512 pixels
  • Output: Single probability score (0-1)
  • Training: 5-fold cross-validation ensemble
  • Framework: PyTorch + timm

Directory Structure

RadFig-classifier/
β”œβ”€β”€ inference.py           # Main inference script
β”œβ”€β”€ models/                # Pre-trained model weights
β”‚   β”œβ”€β”€ tf_efficientnetv2_s.in21k_ft_in1k_fold0_best_loss.pth
β”‚   β”œβ”€β”€ tf_efficientnetv2_s.in21k_ft_in1k_fold1_best_loss.pth
β”‚   β”œβ”€β”€ tf_efficientnetv2_s.in21k_ft_in1k_fold2_best_loss.pth
β”‚   β”œβ”€β”€ tf_efficientnetv2_s.in21k_ft_in1k_fold3_best_loss.pth
β”‚   └── tf_efficientnetv2_s.in21k_ft_in1k_fold4_best_loss.pth
β”œβ”€β”€ README.md
└── requirements.txt

Output Format

Single Image Output

Image: medical_scan.jpg
Probability suitable for VQA: 0.8542
Classification: suitable

CSV Output

image_path filename prediction suitable_for_vqa
/path/img1.jpg img1.jpg 0.8542 True
/path/img2.jpg img2.jpg 0.2156 False
/path/img3.jpg img3.jpg 0.9234 True

Command Line Arguments

Argument Description Required
--input Input image file or directory Yes
--models Directory containing model files No (default: "models")
--output Output CSV file path No
--binary Return binary predictions instead of probabilities No

Use Cases

  • Medical VQA Systems: Pre-filter images before VQA processing
  • Dataset Curation: Automatically filter medical image datasets
  • Quality Control: Assess image quality for medical AI applications
  • Research: Filter images for medical computer vision studies

Citation

If you use RadFig-classifier in your research, please cite:

coming soon...

License

This project is licensed under the MIT License - see the LICENSE file for details.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support