YanJiangJerry's picture
update model card README.md
9de2941
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: SA-roberta-e3-w1-5-b16-w0.01-data2
    results: []

SA-roberta-e3-w1-5-b16-w0.01-data2

This model is a fine-tuned version of Amalq/autotrain-smm4h_large_roberta_clean-874027878 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7680
  • Accuracy: 0.9021
  • F1: 0.8646
  • Precision: 0.8921
  • Recall: 0.8388

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2612 1.0 581 0.4296 0.9021 0.8721 0.8499 0.8955
0.1252 2.0 1162 0.7605 0.8977 0.8571 0.8932 0.8239
0.0567 3.0 1743 0.7680 0.9021 0.8646 0.8921 0.8388

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3