w2v-bert-uk v2.1
Community
- Discord: https://bit.ly/discord-uds
- Speech Recognition: https://t.me/speech_recognition_uk
- Speech Synthesis: https://t.me/speech_synthesis_uk
Overview
This is a next model of https://huggingface.co/Yehor/w2v-bert-uk
Demo
Use https://huggingface.co/spaces/Yehor/w2v-bert-uk-v2.1-demo space to see how the model works with your audios.
Usage
# pip install -U torch soundfile transformers
import torch
import soundfile as sf
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
# Config
model_name = 'Yehor/w2v-bert-2.0-uk-v2.1'
device = 'cuda:1' # or cpu
sampling_rate = 16_000
# Load the model
asr_model = AutoModelForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
paths = [
'sample1.wav',
]
# Extract audio
audio_inputs = []
for path in paths:
audio_input, _ = sf.read(path)
audio_inputs.append(audio_input)
# Transcribe the audio
inputs = processor(audio_inputs, sampling_rate=sampling_rate).input_features
features = torch.tensor(inputs).to(device)
with torch.inference_mode():
logits = asr_model(features).logits
predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids)
# Log results
print('Predictions:')
print(predictions)
- Downloads last month
- 250
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Yehor/w2v-bert-uk-v2.1
Base model
facebook/w2v-bert-2.0