Finetuning - YiYiXu/kandinsky_prior_pokemon
This pipeline was finetuned from kandinsky-community/kandinsky-2-2-prior on the lambdalabs/pokemon-blip-captions dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A robot pokemon, 4k photo']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipe_prior = DiffusionPipeline.from_pretrained("YiYiXu/kandinsky_prior_pokemon", torch_dtype=torch.float16)
pipe_t2i = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
prompt = "A robot pokemon, 4k photo"
image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()
image = pipe_t2i(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 13
- Learning rate: 1e-05
- Batch size: 1
- Gradient accumulation steps: 1
- Image resolution: 768
- Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your wandb
run page.
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for YiYiXu/kandinsky_prior_pokemon
Base model
kandinsky-community/kandinsky-2-2-prior