XML-roBERTA-large-ner-ftit_2_big6

This model is a fine-tuned version of Zamza/XLM-roberta-large-ftit-emb-lr01 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 9.7425
  • Precision Type: 0.4824
  • Recall Type: 0.6945
  • F1 Type: 0.5693
  • Accuracy Type: 0.6945
  • Precision Class: 0.5575
  • Recall Class: 0.7467
  • F1 Class: 0.6384
  • Accuracy Class: 0.7467
  • Precision Rel: 0.9192
  • Recall Rel: 0.9587
  • F1 Rel: 0.9385
  • Accuracy Rel: 0.9587

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 22
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Type Recall Type F1 Type Accuracy Type Precision Class Recall Class F1 Class Accuracy Class Precision Rel Recall Rel F1 Rel Accuracy Rel
10.8548 0.4361 1000 10.8543 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.8102 0.8722 2000 10.8097 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.7626 1.3083 3000 10.7626 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.7216 1.7444 4000 10.7222 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.6778 2.1805 5000 10.6786 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.6371 2.6167 6000 10.6360 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.5934 3.0528 7000 10.5932 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.5549 3.4889 8000 10.5541 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.5181 3.9250 9000 10.5161 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.4797 4.3611 10000 10.4804 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.4421 4.7972 11000 10.4429 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.4057 5.2333 12000 10.4049 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.3732 5.6694 13000 10.3732 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.3387 6.1055 14000 10.3362 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.3056 6.5416 15000 10.3045 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.2734 6.9778 16000 10.2730 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.2444 7.4139 17000 10.2438 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.2134 7.8500 18000 10.2132 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.1825 8.2861 19000 10.1846 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.1561 8.7222 20000 10.1568 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.1278 9.1583 21000 10.1289 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.1036 9.5944 22000 10.1009 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.0787 10.0305 23000 10.0782 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.0547 10.4666 24000 10.0517 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.0286 10.9027 25000 10.0295 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
10.0054 11.3389 26000 10.0078 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.9881 11.7750 27000 9.9886 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.9615 12.2111 28000 9.9647 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.9451 12.6472 29000 9.9452 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.9293 13.0833 30000 9.9296 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.9143 13.5194 31000 9.9111 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.8922 13.9555 32000 9.8931 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.8758 14.3916 33000 9.8750 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.8616 14.8277 34000 9.8626 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.8466 15.2638 35000 9.8466 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.8328 15.7000 36000 9.8345 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.819 16.1361 37000 9.8224 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.8067 16.5722 38000 9.8100 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7976 17.0083 39000 9.7985 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7872 17.4444 40000 9.7893 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7759 17.8805 41000 9.7797 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7748 18.3166 42000 9.7753 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7657 18.7527 43000 9.7666 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7604 19.1888 44000 9.7602 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7561 19.6249 45000 9.7553 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7465 20.0611 46000 9.7509 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7475 20.4972 47000 9.7480 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7459 20.9333 48000 9.7454 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.742 21.3694 49000 9.7425 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587
9.7417 21.8055 50000 9.7425 0.4824 0.6945 0.5693 0.6945 0.5575 0.7467 0.6384 0.7467 0.9192 0.9587 0.9385 0.9587

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
562M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Zamza/XML-roBERTA-large-ner-ftit_2_big6

Finetuned
(3)
this model