XML-roBERTA-large-ner-ftit_2_big6
This model is a fine-tuned version of Zamza/XLM-roberta-large-ftit-emb-lr01 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.7425
- Precision Type: 0.4824
- Recall Type: 0.6945
- F1 Type: 0.5693
- Accuracy Type: 0.6945
- Precision Class: 0.5575
- Recall Class: 0.7467
- F1 Class: 0.6384
- Accuracy Class: 0.7467
- Precision Rel: 0.9192
- Recall Rel: 0.9587
- F1 Rel: 0.9385
- Accuracy Rel: 0.9587
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 22
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Type | Recall Type | F1 Type | Accuracy Type | Precision Class | Recall Class | F1 Class | Accuracy Class | Precision Rel | Recall Rel | F1 Rel | Accuracy Rel |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.8548 | 0.4361 | 1000 | 10.8543 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.8102 | 0.8722 | 2000 | 10.8097 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.7626 | 1.3083 | 3000 | 10.7626 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.7216 | 1.7444 | 4000 | 10.7222 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.6778 | 2.1805 | 5000 | 10.6786 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.6371 | 2.6167 | 6000 | 10.6360 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.5934 | 3.0528 | 7000 | 10.5932 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.5549 | 3.4889 | 8000 | 10.5541 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.5181 | 3.9250 | 9000 | 10.5161 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.4797 | 4.3611 | 10000 | 10.4804 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.4421 | 4.7972 | 11000 | 10.4429 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.4057 | 5.2333 | 12000 | 10.4049 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.3732 | 5.6694 | 13000 | 10.3732 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.3387 | 6.1055 | 14000 | 10.3362 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.3056 | 6.5416 | 15000 | 10.3045 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.2734 | 6.9778 | 16000 | 10.2730 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.2444 | 7.4139 | 17000 | 10.2438 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.2134 | 7.8500 | 18000 | 10.2132 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.1825 | 8.2861 | 19000 | 10.1846 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.1561 | 8.7222 | 20000 | 10.1568 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.1278 | 9.1583 | 21000 | 10.1289 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.1036 | 9.5944 | 22000 | 10.1009 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.0787 | 10.0305 | 23000 | 10.0782 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.0547 | 10.4666 | 24000 | 10.0517 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.0286 | 10.9027 | 25000 | 10.0295 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
10.0054 | 11.3389 | 26000 | 10.0078 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.9881 | 11.7750 | 27000 | 9.9886 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.9615 | 12.2111 | 28000 | 9.9647 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.9451 | 12.6472 | 29000 | 9.9452 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.9293 | 13.0833 | 30000 | 9.9296 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.9143 | 13.5194 | 31000 | 9.9111 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.8922 | 13.9555 | 32000 | 9.8931 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.8758 | 14.3916 | 33000 | 9.8750 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.8616 | 14.8277 | 34000 | 9.8626 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.8466 | 15.2638 | 35000 | 9.8466 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.8328 | 15.7000 | 36000 | 9.8345 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.819 | 16.1361 | 37000 | 9.8224 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.8067 | 16.5722 | 38000 | 9.8100 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7976 | 17.0083 | 39000 | 9.7985 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7872 | 17.4444 | 40000 | 9.7893 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7759 | 17.8805 | 41000 | 9.7797 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7748 | 18.3166 | 42000 | 9.7753 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7657 | 18.7527 | 43000 | 9.7666 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7604 | 19.1888 | 44000 | 9.7602 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7561 | 19.6249 | 45000 | 9.7553 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7465 | 20.0611 | 46000 | 9.7509 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7475 | 20.4972 | 47000 | 9.7480 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7459 | 20.9333 | 48000 | 9.7454 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.742 | 21.3694 | 49000 | 9.7425 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
9.7417 | 21.8055 | 50000 | 9.7425 | 0.4824 | 0.6945 | 0.5693 | 0.6945 | 0.5575 | 0.7467 | 0.6384 | 0.7467 | 0.9192 | 0.9587 | 0.9385 | 0.9587 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Zamza/XML-roBERTA-large-ner-ftit_2_big6
Base model
Zamza/XLM-roberta-large-ftit-emb-lr01