|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-384 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: rmsProp_vitB-32-384-2e4-ne-1-bs-16 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9827586206896551 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# rmsProp_vitB-32-384-2e4-ne-1-bs-16 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0752 |
|
- Accuracy: 0.9828 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.774 | 0.07 | 100 | 3.4867 | 0.0819 | |
|
| 1.1104 | 0.14 | 200 | 1.5104 | 0.5359 | |
|
| 0.2994 | 0.21 | 300 | 0.3914 | 0.8836 | |
|
| 0.2754 | 0.28 | 400 | 0.2456 | 0.9210 | |
|
| 0.212 | 0.35 | 500 | 0.1669 | 0.9511 | |
|
| 0.1063 | 0.42 | 600 | 0.1406 | 0.9511 | |
|
| 0.0999 | 0.49 | 700 | 0.2218 | 0.9425 | |
|
| 0.0609 | 0.56 | 800 | 0.1407 | 0.9598 | |
|
| 0.0784 | 0.63 | 900 | 0.0985 | 0.9641 | |
|
| 0.0251 | 0.7 | 1000 | 0.0963 | 0.9698 | |
|
| 0.0094 | 0.77 | 1100 | 0.0893 | 0.9727 | |
|
| 0.0153 | 0.84 | 1200 | 0.1044 | 0.9670 | |
|
| 0.032 | 0.91 | 1300 | 0.1035 | 0.9713 | |
|
| 0.0042 | 0.97 | 1400 | 0.0752 | 0.9828 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|