distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0605
- Precision: 0.9253
- Recall: 0.9366
- F1: 0.9309
- Accuracy: 0.9839
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2486 | 1.0 | 878 | 0.0694 | 0.9136 | 0.9263 | 0.9199 | 0.9816 |
0.0541 | 2.0 | 1756 | 0.0600 | 0.9215 | 0.9348 | 0.9281 | 0.9836 |
0.0304 | 3.0 | 2634 | 0.0605 | 0.9253 | 0.9366 | 0.9309 | 0.9839 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 119
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train Zarinah/distilbert-base-uncased-finetuned-ner
Evaluation results
- Precision on conll2003validation set self-reported0.925
- Recall on conll2003validation set self-reported0.937
- F1 on conll2003validation set self-reported0.931
- Accuracy on conll2003validation set self-reported0.984