SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
H
  • "('that is a waste of time', 'acl') [SEP] Thesis [SEP] ('because most people tend', 'advcl') [SEP] Thesis4"
  • "('and become', 'conj') [SEP] Elaboration [SEP] ('less stressed after the match', 'xcomp') [SEP] Elaboration3"
  • "('than to waste time', 'acl') [SEP] Elaboration [SEP] ('speculating the events', 'advcl') [SEP] Elaboration3"
L
  • "('So as a basketballer this person might achieve some great results', 'root') [SEP] Argument [SEP] ('by looking on plays of professionals either live', 'advcl') [SEP] Argument2"
  • "('For example my friend Andrew really like bascetball', 'root') [SEP] Elaboration [SEP] ('and NBA players has a big influense on him', 'conj') [SEP] Elaboration2"
  • "('Some of them get inspired', 'root') [SEP] Elaboration [SEP] ('and choose sports as their career', 'conj') [SEP] Elaboration2"
0
  • "('that sport is an essential part of our life', 'ccomp') [SEP] Conclusion [SEP] ('watching it at home', 'csubj') [SEP] Conclusion1"
  • "('that is a completely useless waste of time', 'ccomp') [SEP] Thesis [SEP] ('of watching such international sport activities as champions league or olympic games', 'acl') [SEP] Introductory1"
  • "('of spending free time intellectually and socially', 'acl') [SEP] Conclusion [SEP] ('Secondly simply not watching', 'root') [SEP] Elaboration1"

Evaluation

Metrics

Label Accuracy
all 0.8229

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dim3_BAAI_setfit_model")
# Run inference
preds = model("('that some people watching TV', 'acl') [SEP] Argument [SEP] ('only to relax after work', 'advcl') [SEP] Argument3")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 9 19.0967 35
Label Training Sample Count
L 105
H 94
0 101

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.1536 -
0.0133 50 0.277 -
0.0267 100 0.2479 -
0.0400 150 0.2212 -
0.0534 200 0.1652 -
0.0667 250 0.1512 -
0.0801 300 0.1451 -
0.0934 350 0.1342 -
0.1068 400 0.1129 -
0.1201 450 0.1067 -
0.1334 500 0.0813 -
0.1468 550 0.0474 -
0.1601 600 0.0291 -
0.1735 650 0.0145 -
0.1868 700 0.0103 -
0.2002 750 0.0083 -
0.2135 800 0.006 -
0.2268 850 0.0049 -
0.2402 900 0.0021 -
0.2535 950 0.0037 -
0.2669 1000 0.0019 -
0.2802 1050 0.0015 -
0.2936 1100 0.0029 -
0.3069 1150 0.0013 -
0.3203 1200 0.0013 -
0.3336 1250 0.0011 -
0.3469 1300 0.0011 -
0.3603 1350 0.001 -
0.3736 1400 0.0017 -
0.3870 1450 0.0013 -
0.4003 1500 0.0023 -
0.4137 1550 0.0009 -
0.4270 1600 0.0009 -
0.4404 1650 0.0008 -
0.4537 1700 0.0008 -
0.4670 1750 0.0008 -
0.4804 1800 0.0007 -
0.4937 1850 0.0007 -
0.5071 1900 0.0007 -
0.5204 1950 0.0007 -
0.5338 2000 0.0007 -
0.5471 2050 0.0007 -
0.5604 2100 0.0007 -
0.5738 2150 0.0007 -
0.5871 2200 0.0007 -
0.6005 2250 0.0006 -
0.6138 2300 0.0007 -
0.6272 2350 0.0007 -
0.6405 2400 0.0006 -
0.6539 2450 0.0006 -
0.6672 2500 0.0013 -
0.6805 2550 0.0006 -
0.6939 2600 0.0006 -
0.7072 2650 0.0006 -
0.7206 2700 0.0006 -
0.7339 2750 0.0006 -
0.7473 2800 0.0006 -
0.7606 2850 0.0006 -
0.7740 2900 0.0005 -
0.7873 2950 0.0006 -
0.8006 3000 0.0005 -
0.8140 3050 0.0005 -
0.8273 3100 0.0005 -
0.8407 3150 0.0005 -
0.8540 3200 0.0005 -
0.8674 3250 0.0005 -
0.8807 3300 0.0005 -
0.8940 3350 0.0005 -
0.9074 3400 0.0005 -
0.9207 3450 0.0005 -
0.9341 3500 0.0005 -
0.9474 3550 0.0005 -
0.9608 3600 0.0005 -
0.9741 3650 0.0006 -
0.9875 3700 0.0005 -

Framework Versions

  • Python: 3.11.13
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.1
  • PyTorch: 2.6.0+cu124
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
33.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Zlovoblachko/dim3_BAAI_setfit_model

Finetuned
(199)
this model

Evaluation results