roberta-base_binary

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1729
  • Precision: 0.8178
  • Recall: 0.6136
  • F1: 0.7012
  • F0.5: 0.7668
  • Macro Precision: 0.8824
  • Macro Recall: 0.7971
  • Macro F1: 0.8323
  • Macro F0.5: 0.8602

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 F0.5 Macro Precision Macro Recall Macro F1 Macro F0.5
0.1963 1.0 1926 0.1702 0.8148 0.6179 0.7028 0.7660 0.8814 0.7991 0.8333 0.8601
0.1621 1.9992 3850 0.1698 0.8027 0.6472 0.7166 0.7659 0.8772 0.8124 0.8405 0.8613

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
14
Safetensors
Model size
124M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Zlovoblachko/roberta-base_binary

Finetuned
(1696)
this model