rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("aaa961/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 168
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 to - my - klarna - for - the 12 -1_to_my_klarna_for
0 klarna - my - declined - in - for 62 0_klarna_my_declined_in
1 my - details - klarna - and - call 34 1_my_details_klarna_and
2 the - payment - for - to - pay 24 2_the_payment_for_to
3 the - store - it - for - ago 19 3_the_store_it_for
4 the - ago - sneakers - and - shoes 17 4_the_ago_sneakers_and

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: auto
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.3.0+4.g1dfc98e16a
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.1.1
  • Transformers: 4.42.2
  • Numba: 0.60.0
  • Plotly: 6.1.2
  • Python: 3.9.22
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support