See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-7b-it
bf16: true
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 5cba27f46528b161_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5cba27f46528b161_train_data.json
type:
field_instruction: topic
field_output: argument
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: abaddon182/0d2cd7a2-bf9c-4ec7-84f8-9b157361fb79
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2000
micro_batch_size: 8
mlflow_experiment_name: /tmp/5cba27f46528b161_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 222ac3b0-53c1-48b4-ba8c-81ca2da4fba8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 222ac3b0-53c1-48b4-ba8c-81ca2da4fba8
warmup_steps: 100
weight_decay: 0.1
xformers_attention: null
0d2cd7a2-bf9c-4ec7-84f8-9b157361fb79
This model is a fine-tuned version of unsloth/gemma-7b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4701
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0011 | 1 | 5.8767 |
2.4168 | 0.2231 | 200 | 2.8869 |
2.2777 | 0.4462 | 400 | 2.7580 |
2.2909 | 0.6693 | 600 | 2.7964 |
2.2493 | 0.8924 | 800 | 2.8303 |
2.253 | 1.1154 | 1000 | 2.6308 |
2.1651 | 1.3385 | 1200 | 2.5416 |
2.1935 | 1.5616 | 1400 | 2.4496 |
2.1667 | 1.7847 | 1600 | 2.4232 |
2.2793 | 2.0078 | 1800 | 2.4163 |
2.0308 | 2.2309 | 2000 | 2.4701 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for abaddon182/0d2cd7a2-bf9c-4ec7-84f8-9b157361fb79
Base model
unsloth/gemma-7b-it