metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- abdouaziiz/hausa_unified
metrics:
- wer
model-index:
- name: whisper-medium-v3-ha-4
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: abdouaziiz/hausa_unified
type: abdouaziiz/hausa_unified
metrics:
- name: Wer
type: wer
value: 0.24580119656887478
whisper-medium-v3-ha-4
This model is a fine-tuned version of openai/whisper-small on the abdouaziiz/hausa_unified dataset. It achieves the following results on the evaluation set:
- Loss: 0.3495
- Wer: 0.2458
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 26000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2577 | 1.6447 | 2000 | 0.3744 | 0.2884 |
0.0717 | 3.2895 | 4000 | 0.3495 | 0.2458 |
0.0274 | 4.9342 | 6000 | 0.3574 | 0.2215 |
0.0073 | 6.5789 | 8000 | 0.3820 | 0.2155 |
0.0036 | 8.2237 | 10000 | 0.4093 | 0.2188 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.20.3