whisper-small-tajik / README.md
abduaziz's picture
End of training
0eb96f5 verified
metadata
library_name: transformers
language:
  - tg
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Tajik
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: tg_tj
          split: None
          args: 'config: tg, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 24.260635774157837

Whisper Small Tajik

This model is a fine-tuned version of openai/whisper-small on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4141
  • Wer: 24.2606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7687 1.0 79 0.5778 39.6568
0.7193 2.0 158 0.3890 28.3568
0.3659 3.0 237 0.3611 26.0636
0.2021 4.0 316 0.3629 25.1068
0.1099 5.0 395 0.3740 25.3044
0.0597 6.0 474 0.3887 24.3081
0.0339 7.0 553 0.4005 24.6639
0.0213 8.0 632 0.4082 24.3239
0.0158 9.0 711 0.4131 24.2685
0.014 10.0 790 0.4141 24.2606

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0