aubmindlab-bert-base-arabertv02-arabic-fp16-allagree-cameltools
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1795
- Accuracy: 0.9403
- Precision: 0.9401
- Recall: 0.9403
- F1: 0.9400
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.9932 | 0.7463 | 50 | 0.7083 | 0.7491 | 0.7400 | 0.7491 | 0.6763 |
0.4838 | 1.4925 | 100 | 0.2678 | 0.9179 | 0.9174 | 0.9179 | 0.9174 |
0.2028 | 2.2388 | 150 | 0.1874 | 0.9366 | 0.9368 | 0.9366 | 0.9365 |
0.1759 | 2.9851 | 200 | 0.1795 | 0.9403 | 0.9401 | 0.9403 | 0.9400 |
0.1126 | 3.7313 | 250 | 0.1833 | 0.9459 | 0.9461 | 0.9459 | 0.9459 |
0.0771 | 4.4776 | 300 | 0.2057 | 0.9412 | 0.9416 | 0.9412 | 0.9413 |
0.0608 | 5.2239 | 350 | 0.2461 | 0.9403 | 0.9408 | 0.9403 | 0.9400 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for abdulrahman-nuzha/aubmindlab-bert-base-arabertv02-arabic-fp16-allagree-cameltools
Base model
aubmindlab/bert-base-arabertv02