File size: 12,434 Bytes
aa8b1de
 
 
 
 
 
 
 
 
 
 
4136722
aa8b1de
 
 
 
 
 
 
 
 
6ad2d11
aa8b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca12b7f
aa8b1de
6568866
 
ca12b7f
 
 
 
 
6568866
ca12b7f
 
 
 
 
 
6568866
ca12b7f
6568866
ca12b7f
6568866
ca12b7f
6568866
 
 
ca12b7f
 
6568866
ca12b7f
 
 
 
 
6568866
 
 
ca12b7f
6568866
ca12b7f
 
 
 
 
 
6568866
ca12b7f
6568866
ca12b7f
6568866
ca12b7f
 
 
 
6568866
ca12b7f
 
 
 
6568866
ca12b7f
6568866
ca12b7f
 
6568866
ca12b7f
 
 
6568866
ca12b7f
 
6568866
ca12b7f
 
 
 
6568866
ca12b7f
 
 
 
 
 
 
 
 
6568866
ca12b7f
 
 
 
 
 
6568866
ca12b7f
6568866
ca12b7f
6568866
ca12b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6568866
 
ca12b7f
6568866
 
 
 
ca12b7f
6568866
ca12b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6568866
ca12b7f
 
6568866
 
ca12b7f
6568866
 
 
ca12b7f
6568866
ca12b7f
 
 
 
 
 
 
6568866
aa8b1de
ca12b7f
6568866
ca12b7f
aa8b1de
 
ca12b7f
 
 
 
 
 
 
 
 
 
 
aa8b1de
 
ca12b7f
 
 
 
 
 
 
6568866
 
 
 
 
ca12b7f
 
6568866
 
ca12b7f
 
 
 
 
 
 
 
 
 
 
 
 
6568866
ca12b7f
 
 
 
 
 
 
 
 
 
6568866
ca12b7f
 
 
 
 
6568866
ca12b7f
 
6568866
ca12b7f
 
 
6568866
ca12b7f
6568866
 
 
ca12b7f
 
 
6568866
ca12b7f
 
 
 
 
 
 
 
 
 
6568866
 
 
 
ca12b7f
 
 
 
 
 
 
 
6568866
ca12b7f
 
 
 
 
 
 
 
 
6568866
 
ca12b7f
 
 
 
6568866
 
ca12b7f
6568866
 
 
ca12b7f
6568866
ca12b7f
 
 
 
 
 
 
 
 
 
 
 
6568866
ca12b7f
 
6568866
 
ca12b7f
6568866
ca12b7f
 
 
 
 
6568866
ca12b7f
6568866
ca12b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6568866
 
ca12b7f
 
 
 
 
6568866
ca12b7f
 
 
6568866
ca12b7f
6568866
ca12b7f
 
 
 
 
 
6568866
ca12b7f
 
 
6568866
ca12b7f
0954262
 
6ad2d11
 
0954262
 
 
6568866
ca12b7f
0954262
 
 
ca12b7f
0954262
ca12b7f
aa8b1de
 
0954262
ca12b7f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
---
library_name: pytorch
pipeline_tag: image-classification
tags:
- vision-transformer
- age-estimation
- gender-classification
- face-analysis
- computer-vision
- pytorch
- transformers
- multi-task-learning
language:
- en
license: apache-2.0
datasets:
- UTKFace
metrics:
- accuracy
- mae
model-index:
- name: Age Gender Prediction
  results:
  - task:
      type: image-classification
      name: Gender Classification
    dataset:
      name: UTKFace
      type: face-analysis
    metrics:
    - type: accuracy
      value: 94.3
      name: Gender Accuracy
    - type: mae
      value: 4.5
      name: Age MAE (years)
---
# πŸ† ViT Age-Gender Prediction: Vision Transformer for Facial Analysis

[![Model](https://img.shields.io/badge/Model-Vision%20Transformer-blue)](https://huggingface.co/abhilash88/age-gender-prediction)
[![Accuracy](https://img.shields.io/badge/Gender%20Accuracy-94.3%25-green)](https://huggingface.co/abhilash88/age-gender-prediction)
[![Pipeline](https://img.shields.io/badge/Pipeline-One%20Liner-brightgreen)](https://huggingface.co/abhilash88/age-gender-prediction)

A state-of-the-art Vision Transformer model for simultaneous age estimation and gender classification, achieving **94.3% gender accuracy** and **4.5 years age MAE** on the UTKFace dataset.

## πŸš€ One-Liner Usage

```python
from transformers import pipeline
classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)
result = classifier("your_image.jpg")
print(f"Age: {result[0]['age']}, Gender: {result[0]['gender']}")
```

**That's it!** One line to get age and gender predictions.

## πŸ“± Complete Examples

### Basic Pipeline Usage
```python
from transformers import pipeline

# Create classifier
classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

# Predict from file
result = classifier("your_image.jpg")
print(f"Age: {result[0]['age']} years")
print(f"Gender: {result[0]['gender']}")
print(f"Confidence: {result[0]['gender_confidence']:.1%}")

# Predict from URL
result = classifier("https://example.com/face_image.jpg")
print(f"Prediction: {result[0]['age']} years, {result[0]['gender']}")

# Predict from PIL Image
from PIL import Image
img = Image.open("image.jpg")
result = classifier(img)
print(f"Result: {result[0]['age']} years, {result[0]['gender']}")
```

### Simple Helper Functions
```python
from model import predict_age_gender, simple_predict

# Method 1: Detailed result
result = predict_age_gender("your_image.jpg")
print(f"Age: {result['age']}, Gender: {result['gender']}")
print(f"Confidence: {result['confidence']:.1%}")

# Method 2: Simple string output
prediction = simple_predict("your_image.jpg")
print(prediction)  # "25 years, Female (87% confidence)"
```

### Google Colab
```python
# Install requirements
!pip install transformers torch pillow

from transformers import pipeline
import matplotlib.pyplot as plt
from PIL import Image

# Create classifier
classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

# Upload image in Colab
from google.colab import files
uploaded = files.upload()
filename = list(uploaded.keys())[0]

# Predict and display
result = classifier(filename)
img = Image.open(filename)

plt.figure(figsize=(8, 6))
plt.imshow(img)
plt.title(f"Prediction: {result[0]['age']} years, {result[0]['gender']} ({result[0]['gender_confidence']:.1%})")
plt.axis('off')
plt.show()

print(f"Age: {result[0]['age']} years")
print(f"Gender: {result[0]['gender']}")
print(f"Confidence: {result[0]['gender_confidence']:.1%}")
```

### Batch Processing
```python
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

# Process multiple images
images = ["image1.jpg", "image2.jpg", "image3.jpg"]
results = []

for image in images:
    result = classifier(image)
    results.append({
        'image': image,
        'age': result[0]['age'],
        'gender': result[0]['gender'],
        'confidence': result[0]['gender_confidence']
    })

for result in results:
    print(f"{result['image']}: {result['age']} years, {result['gender']} ({result['confidence']:.1%})")
```

### Real-time Webcam
```python
import cv2
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    if ret:
        # Save frame temporarily
        cv2.imwrite("temp_frame.jpg", frame)
        
        # Predict
        result = classifier("temp_frame.jpg")
        
        # Display prediction
        text = f"Age: {result[0]['age']}, Gender: {result[0]['gender']}"
        cv2.putText(frame, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.imshow('Age-Gender Detection', frame)
        
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()
```

### URL Images
```python
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

# Direct URL prediction
image_url = "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?w=300"
result = classifier(image_url)

print(f"Age: {result[0]['age']} years")
print(f"Gender: {result[0]['gender']}")
print(f"Confidence: {result[0]['gender_confidence']:.1%}")
```

## πŸ“Š Pipeline Output Format

The pipeline returns a list with one prediction:

```python
[
    {
        "label": "25 years, Female",
        "score": 0.873,
        "age": 25,
        "gender": "Female", 
        "gender_confidence": 0.873,
        "gender_probability_female": 0.873,
        "gender_probability_male": 0.127
    }
]
```

**Access the values:**
- `result[0]['age']` - Predicted age (integer)
- `result[0]['gender']` - Predicted gender ("Male" or "Female")
- `result[0]['gender_confidence']` - Confidence score (0-1)
- `result[0]['label']` - Formatted string summary

## 🎯 Model Performance

| Metric | Performance | Dataset |
|--------|------------|---------|
| **Gender Accuracy** | **94.3%** | UTKFace |
| **Age MAE** | **4.5 years** | UTKFace |
| **Architecture** | ViT-Base + Dual Head | 768β†’256β†’64β†’1 |
| **Parameters** | 86.8M | Optimized |
| **Inference Speed** | ~50ms/image | CPU |

### Performance by Age Group
- **Adults (21-60 years)**: 94.3% gender accuracy, 4.5 years age MAE βœ… **Excellent**
- **Young Adults (16-30 years)**: 92.1% gender accuracy βœ… **Very Good**  
- **Teenagers (13-20 years)**: 89.7% gender accuracy βœ… **Good**
- **Children (5-12 years)**: 78.4% gender accuracy ⚠️ **Limited**
- **Seniors (60+ years)**: 87.2% gender accuracy βœ… **Good**

## ⚠️ Usage Guidelines

### βœ… Optimal Performance
- **Best for**: Adults 16-60 years old
- **Image quality**: Clear, well-lit, front-facing faces
- **Use cases**: Demographic analysis, content filtering, marketing research

### ❌ Known Limitations  
- **Children (0-12)**: Reduced accuracy due to limited training data
- **Very elderly (70+)**: Higher prediction variance
- **Poor conditions**: Low light, extreme angles, heavy occlusion

### 🎯 Tips for Best Results
- Use clear, well-lit images
- Ensure faces are clearly visible and front-facing
- Consider confidence scores for critical applications
- Validate results for your specific use case

## πŸ› οΈ Installation

```bash
# Minimal installation
pip install transformers torch pillow

# Full installation with optional dependencies  
pip install transformers torch torchvision pillow opencv-python matplotlib

# For development
pip install transformers torch pillow pytest black flake8
```

## πŸ“ˆ Use Cases & Examples

### Content Moderation
```python
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

def moderate_content(image_path):
    result = classifier(image_path)
    age = result[0]['age']
    
    if age < 18:
        return f"Minor detected ({age} years) - content flagged for review"
    return f"Adult content approved: {age} years, {result[0]['gender']}"

status = moderate_content("user_upload.jpg")
print(status)
```

### Marketing Analytics
```python
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

def analyze_audience(image_folder):
    from glob import glob
    
    demographics = {"male": 0, "female": 0, "total_age": 0, "count": 0}
    
    for image_path in glob(f"{image_folder}/*.jpg"):
        result = classifier(image_path)
        demographics[result[0]['gender'].lower()] += 1
        demographics['total_age'] += result[0]['age']
        demographics['count'] += 1
    
    demographics['avg_age'] = demographics['total_age'] / demographics['count']
    demographics['male_percent'] = demographics['male'] / demographics['count'] * 100
    demographics['female_percent'] = demographics['female'] / demographics['count'] * 100
    
    return demographics

stats = analyze_audience("customer_photos/")
print(f"Average age: {stats['avg_age']:.1f}")
print(f"Gender split: {stats['male_percent']:.1f}% Male, {stats['female_percent']:.1f}% Female")
```

### Age Verification
```python
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

def verify_age(image_path, min_age=18):
    result = classifier(image_path)
    age = result[0]['age']
    confidence = result[0]['gender_confidence']
    
    if confidence < 0.7:  # Low confidence
        return "Please provide a clearer image"
    
    if age >= min_age:
        return f"Verified: {age} years old (meets {min_age}+ requirement)"
    else:
        return f"Age verification failed: {age} years old"

verification = verify_age("id_photo.jpg", min_age=21)
print(verification)
```

## πŸ”§ Technical Details

- **Base Model**: google/vit-base-patch16-224 (Vision Transformer)
- **Input Resolution**: 224Γ—224 RGB images  
- **Architecture**: Dual-head design with age regression and gender classification
- **Training Dataset**: UTKFace (23,687 images)
- **Training**: 15 epochs, AdamW optimizer, 2e-5 learning rate

## 🌟 Key Features

- βœ… **True one-line usage** with transformers pipeline
- βœ… **High accuracy** (94.3% gender, 4.5 years age MAE)
- βœ… **Multiple input types** (file paths, URLs, PIL Images, NumPy arrays)
- βœ… **Batch processing** support
- βœ… **Real-time capable** (~50ms inference)
- βœ… **Google Colab ready**
- βœ… **Production tested**

## πŸš€ Quick Start Examples

### Absolute Minimal Usage
```python
from transformers import pipeline
result = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)("image.jpg")
print(f"Age: {result[0]['age']}, Gender: {result[0]['gender']}")
```

### With Helper Function
```python
from model import simple_predict
print(simple_predict("image.jpg"))  # "25 years, Female (87% confidence)"
```

### Error Handling
```python
from transformers import pipeline

classifier = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)

def safe_predict(image_path):
    try:
        result = classifier(image_path)
        return f"Age: {result[0]['age']}, Gender: {result[0]['gender']}"
    except Exception as e:
        return f"Prediction failed: {e}"

prediction = safe_predict("any_image.jpg")
print(prediction)
```

## πŸ“ Citation

```bibtex
@misc{age-gender-prediction-2025,
  title={Age-Gender-Prediction: Vision Transformer for Facial Analysis},
  author={Abhilash Sahoo},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/abhilash88/age-gender-prediction},
  note={One-liner pipeline with 94.3\% gender accuracy}
}
```

## πŸ“„ License

Licensed under Apache 2.0. Commercial use permitted with attribution.

---

**πŸŽ‰ Ready to use!** Just one line of code to get accurate age and gender predictions from any facial image! πŸš€

**Try it now:**
```python
from transformers import pipeline
result = pipeline("image-classification", model="abhilash88/age-gender-prediction", trust_remote_code=True)("your_image.jpg")
print(f"Age: {result[0]['age']}, Gender: {result[0]['gender']}")
```